112 research outputs found

    Electronic optics in graphene in the semiclassical approximation

    Get PDF
    We study above-barrier scattering of Dirac electrons by a smooth electrostatic potential combined with a coordinate-dependent mass in graphene. We assume that the potential and mass are sufficiently smooth, so that we can define a small dimensionless semiclassical parameter h≪1h \ll 1. This electronic optics setup naturally leads to focusing and the formation of caustics, which are singularities in the density of trajectories. We construct a semiclassical approximation for the wavefunction in all points, placing particular emphasis on the region near the caustic, where the maximum of the intensity lies. Because of the matrix character of the Dirac equation, this wavefunction contains a nontrivial semiclassical phase, which is absent for a scalar wave equation and which influences the focusing. We carefully discuss the three steps in our semiclassical approach: the adiabatic reduction of the matrix equation to an effective scalar equation, the construction of the wavefunction using the Maslov canonical operator and the application of the uniform approximation to the integral expression for the wavefunction in the vicinity of a caustic. We consider several numerical examples and show that our semiclassical results are in very good agreement with the results of tight-binding calculations. In particular, we show that the semiclassical phase can have a pronounced effect on the position of the focus and its intensity.Comment: 103 pages, 11 figure

    Whitham systems and deformations

    Full text link
    We consider the deformations of Whitham systems including the "dispersion terms" and having the form of Dubrovin-Zhang deformations of Frobenius manifolds. The procedure is connected with B.A. Dubrovin problem of deformations of Frobenius manifolds corresponding to the Whitham systems of integrable hierarchies. Under some non-degeneracy requirements we suggest a general scheme of the deformation of the hyperbolic Whitham systems using the initial non-linear system. The general form of the deformed Whitham system coincides with the form of the "low-dispersion" asymptotic expansions used by B.A. Dubrovin and Y. Zhang in the theory of deformations of Frobenius manifolds.Comment: 27 pages, Late

    Whitham method for Benjamin-Ono-Burgers equation and dispersive shocks in internal waves in deep fluid

    Full text link
    The Whitham modulation equations for the parameters of a periodic solution are derived using the generalized Lagrangian approach for the case of damped Benjamin-Ono equation. The structure of the dispersive shock in internal wave in deep water is considered by this method.Comment: 8 pages, 4 figure

    Approximate techniques for dispersive shock waves in nonlinear media

    Get PDF
    Many optical and other nonlinear media are governed by dispersive, or diffractive, wave equations, for which initial jump discontinuities are resolved into a dispersive shock wave. The dispersive shock wave smooths the initial discontinuity and is a modulated wavetrain consisting of solitary waves at its leading edge and linear waves at its trailing edge. For integrable equations the dispersive shock wave solution can be found using Whitham modulation theory. For nonlinear wave equations which are hyperbolic outside the dispersive shock region, the amplitudes of the solitary waves at the leading edge and the linear waves at the trailing edge of the dispersive shock can be determined. In this paper an approximate method is presented for calculating the amplitude of the lead solitary waves of a dispersive shock for general nonlinear wave equations, even if these equations are not hyperbolic in the dispersionless limit. The approximate method is validated using known dispersive shock solutions and then applied to calculate approximate dispersive shock solutions for equations governing nonlinear optical media, such as nematic liquid crystals, thermal glasses and colloids. These approximate solutions are compared with numerical results and excellent comparisons are obtained

    Hard loss of stability in Painlev\'e-2 equation

    Full text link
    A special asymptotic solution of the Painlev\'e-2 equation with small parameter is studied. This solution has a critical point t∗t_* corresponding to a bifurcation phenomenon. When t<t∗t<t_* the constructed solution varies slowly and when t>t∗t>t_* the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures

    Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type

    Full text link
    We consider the special type of the field-theoretical Symplectic structures called weakly nonlocal. The structures of this type are in particular very common for the integrable systems like KdV or NLS. We introduce here the special class of the weakly nonlocal Symplectic structures which we call the weakly nonlocal Symplectic structures of Hydrodynamic Type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of "averaging" of the weakly nonlocal Symplectic structures. The averaging procedure gives the weakly nonlocal Symplectic Structure of Hydrodynamic Type for the corresponding Whitham system. The procedure gives also the "action variables" corresponding to the wave numbers of mm-phase solutions of initial system which give the additional conservation laws for the Whitham system.Comment: 64 pages, Late

    Double Beta Decay: Historical Review of 75 Years of Research

    Full text link
    Main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.Comment: 25 pages, typos adde

    The legacy of the experimental hadron physics programme at COSY

    Get PDF
    • …
    corecore