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Many optical and other nonlinear media are governed by dispersive, or diffractive, wave
equations, for which initial jump discontinuities are resolved into a dispersive shock
wave. The dispersive shock wave smooths the initial discontinuity and is a modulated
wavetrain consisting of solitary waves at its leading edge and linear waves at its trailing
edge. For integrable equations the dispersive shock wave solution can be found using
Whitham modulation theory. For nonlinear wave equations which are hyperbolic out-
side the dispersive shock region, the amplitudes of the solitary waves at the leading edge
and the linear waves at the trailing edge of the dispersive shock can be determined. In
this paper an approximate method is presented for calculating the amplitude of the lead
solitary waves of a dispersive shock for general nonlinear wave equations, even if these
equations are not hyperbolic in the dispersionless limit. The approximate method is
validated using known dispersive shock solutions and then applied to calculate approx-
imate dispersive shock solutions for equations governing nonlinear optical media, such
as nematic liquid crystals, thermal glasses and colloids. These approximate solutions are
compared with numerical results and excellent comparisons are obtained.

Keywords: solitary waves, dispersive shock waves, nonlocal optical media, conservation
laws

1. Introduction

Bores, also termed dispersive shock waves or collisionless shocks, depending on

the application area, are a ubiquitous waveform in nonlinear wave systems. The

term shock arises from supersonic gas dynamics in which a shock is a propagating

sharp discontinuity, across which pressure, density and other physical quantities

undergo a jump1. However, for wave systems in which there is dispersion or diffrac-

tion an initial discontinuity is resolved, due to the large derivatives involved, into a

non-uniform oscillatory wavetrain. Usually, the leading edge of this wavetrain con-

sists of solitary waves, while the trailing edge consists of linear waves. Bores were

first observed as surface waves on fluids, the most famous being tidal bores, such

as the Severn Bore in England and the tidal bore in the Bay of Fundy in Canada.

These bores arise due to narrowing estuaries enhancing strong tides so that the tide

breaks with dispersion then resolving the breaking wave form into a bore. Bores

also occur in the atmosphere, the most well known being glory waves2,3,4,5, and as

1
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internal waves in the ocean6. Fluid bores can be of two types, viscous and undu-

lar bores, depending on whether viscosity or dispersion, respectively, dominate the

evolution1,7,8. While bores were first observed in fluid systems, they occur in nonlin-

ear optical media. Numerical and experimental studies have found that dispersive

shocks can form in nonlinear crystals9,10,11 and nonlinear thermal media12,13,14.

The major theoretical advance for the description of undular bores, or dispersive

shock waves or collisionless shocks, was the development of modulation theory which

describes the evolution of non-steady, or modulated, nonlinear wavetrains1,15. When

the modulation equations form a hyperbolic system the underlying wavetrain is

stable, while when the modulation equations are elliptic, the wavetrain is unstable.

Hyperbolic modulation equations possess a simple wave solution which describes an

undular bore. This undular bore solution was first found for the Korteweg-de Vries

(KdV) equation16,17, which describes weakly nonlinear long waves in a fluid, based

on the modulation equations for the KdV equation1,15. The modulation equations

for nonlinear wave equations which possess an inverse scattering solution can be set

into Riemann invariant form, so that the simple wave solution describing an undular

bore can be found explicitly18. When the governing nonlinear wave equation does

not have an inverse scattering solution it is usually impossible to set the modulation

equations in Riemann invariant form, so that the undular bore solution can be

determined. In this case, a general method has been developed which can determine

the solitary waves at the leading edge and the linear waves at the trailing edge of

the bore19,20,21. However, this method relies on the nonlinear wave equation being

hyperbolic outside of the bore region.

A broad class of nonlinear optical media have a response which is termed nonlo-

cal, examples being thermal media12,13,14,22, thermal glasses23,24 and nematic liquid

crystals25,26. For such nonlocal media the optical beam evolution is coupled to an

elliptic equation for the medium response. The medium response is nonlocal as it

extends far beyond the beam waist. A consequence of this elliptic response of the

medium is that when a bore (dispersive shock) forms the governing equations are

not hyperbolic outside of the bore region. The method of El19,20,21 then cannot be

used to derive the leading and trailing edges of the bore solution.

In the present work an approximate method will be discussed which can de-

termine the amplitude of the solitary waves at the leading edge of an undular

bore. This method does not rely on the existence of an inverse scattering solution

or the governing equations being hyperbolic outside the bore region. The bore is

approximated by a train of equal amplitude, equally spaced solitary waves. This

approximation is not valid in the early stages of bore evolution from an initial jump

discontinuity, but becomes a good approximation as the bore develops. This is be-

cause as it develops more waves are generated in the bore, with the length of the

leading edge of the bore, which can be well approximated by solitary waves, increas-

ing. Hence, as a bore evolves it becomes dominated by solitary waves. Conservation

equations for the governing equations are then used to determine the amplitude of
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these solitary waves. The validity of this approximate method will be determined

by comparing its predictions with the known bore solutions of the KdV equation,

the Benjamin-Ono equation, the modified KdV (mKdV) equation and the nonlinear

Schrödinger (NLS) equation. The first three of these equations arise in water wave

theory, while the last one arises in water wave theory, fibre optics and nonlinear

optics. It is found that the approximate theory gives a good approximation for the

amplitude of the solitary wave at the leading edge of a bore, with the error varying

between 0% for the KdV equation to 30% for the Benjamin-Ono equation. With

this validation of the approximate method, it is then used to find the amplitude

of the leading solitary waves of bores for nonlocal equations governing nonlinear

optical beam propagation. The modulation equations describing optical beam prop-

agation in many nonlocal media, such as nematic liquid crystals, are elliptic, so that

periodic wave solutions are modulationally unstable. A simple wave bore solution

is then not expected to exist. However, if the nonlocality is large enough the onset

of modulational(MI) instability is delayed27, so a bore-type solution exists for ex-

perimental length scales28. The approximate method is found to give solutions in

good agreement with numerical solutions of these nonlocal equations.

2. Integrable equations

To develop and validate the approximate method for determining the amplitude

of the lead waves in a bore, or dispersive shock, let us first consider the standard

integrable equations which have known bore solutions determined from modulation

theory, these equations being the KdV, mKdV, Benjamin-Ono and NLS equations.

These are all integrable systems for which Whitham modulation theory provides

dispersive shock solutions. These known dispersive shock solutions then provide

test cases against which the approximate method can be validated.

2.1. Korteweg-de Vries equation

The simplest equation for which to develop the approximate method is the

Korteweg-de Vries (KdV) equation

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, (2.1)

which is the generic nonlinear dispersive wave equation having an exact solution

via the inverse scattering transform1,29. This equation arises in a large number of

application areas, including water waves, both surface and internal1, and plasma

physics. The dispersive shock wave solution for the KdV equation16,17 has been

derived from the modulation equations for this equation1,15. The simplest initial

condition which will lead to the development of a dispersive shock wave is the jump

initial condition

u =

{

A, x < 0,

0, x > 0,
(2.2)
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where A is the jump amplitude.

To find an approximate solution for the dispersive shock wave generated by

the initial condition (2.2) we shall approximate it by a uniform train of KdV

solitons30,31, which have the form

u = As sech
2

√

As

2
(x − 2Ast). (2.3)

This approximation is appropriate for large time as then the bore consists of a large

number of individual waves dominated by solitary waves extending from its leading

edge16,17. The approximation is not valid near the trailing edge of the bore, where

it consists of linear waves. However, this trailing edge region is small in comparison

with the leading edge portion for large time.s

The method determines the amplitude As of the solitons generated by the bore.

For an initial-boundary value problem30,32 all the mass and energy created at the

boundary is converted into solitary waves. Hence, the number of solitary waves N

and their spacing can be determined. However, for the initial condition (2.2), which

gives an initial value problem on the infinite line −∞ < x < ∞, mass and energy

can be generated at a different rate to the creation of solitary waves. Hence, the

number of solitary waves generated cannot be easily found, but the amplitude of

these solitary waves can be.

The KdV equation (2.1) has the mass and energy conservation equations

∂

∂t
u+

∂

∂x

(

3u2 + uxx

)

= 0, (2.4)

∂

∂t
u2 +

∂

∂x

(

4u3 + 2uuxx − u2
x

)

= 0. (2.5)

Integrating these conservation laws between x = ±∞ gives

d

dt
< u >= 3A2 and

d

dt
< u2 >= 4A3, (2.6)

on using the initial condition (2.2) to determine the flux contributions at x = ±∞.

Here < Q > denotes the average

< Q >=

∫

∞

−∞

Q dx. (2.7)

Taking the ratio of the two averaged conservation equations (2.6) and integrating

gives

4A < u >= 3 < u2 >, (2.8)

on assuming that there are no solitons initially. For a single solitary wave we have

< u >= 2
√

2As and < u2 >=
4
√
2

3
A3/2

s . (2.9)

Substituting these expressions into (2.8) gives the relation As = 2A for the ampli-

tude of the lead soliton in terms of the jump height. This is the same expression as

that given by modulation theory for the KdV equation16,17.
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Fig. 1. (Color online) Numerical solution of the KdV equation (2.1) at t = 20 for the initial
condition (2.2) with A = 1.

If all the mass and energy of the initial condition is converted directly into

solitary waves, then the simple theory developed in this section can also be used to

determine the number N(t) of waves in the bore at time t. Since the amplitude of

the solitons in the bore has been assumed to be constant

d

dt
< u >= M

dN

dt
, (2.10)

where M is the mass of a single soliton. The mass conservation expressions in (2.6)

and (2.9) and the soliton amplitude relation As = 2A then give

N =
3

4
A3/2t. (2.11)

Figure 1 shows the free surface height, u versus x, for the KdV equation (2.1). Shown

is the numerical solution of (2.1) at t = 20 for the initial condition (2.2) with A = 1.

The figure shows a typical bore solution of the KdV equation. There is a linear

amplitude variation between the solitons at the front of the bore and linear waves

at the rear. The amplitude of the lead soliton in the numerical bore corresponds

very closely to the theoretical prediction of 2. For this example the formula (2.11)

predicts N = 15 waves in the bore. This is not in agreement with the figure, which

has about 40 waves in the bore. However, all the waves in the numerical bore do

not have the same amplitude, a key assumption of the approximate theory. If the

mass of N solitons is redistributed so that the solitons have a linearly decreasing

amplitude, this then gives 3
2N = 23 waves in the bore at time t = 20. Hence, about

half of the mass being generated from the initial condition is being converted into

KdV solitons.
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2.2. mKdV and Benjamin-Ono equations

The preceding analysis shows that treating the bore as a train of equal amplitude

solitons gives the exact value for the amplitude of the lead soliton of the bore and

a good approximation for the number of waves in the bore. Let us now apply this

approximate method to the mKdV and Benjamin-Ono equations, both of which

have an inverse scattering solution and for both of which there is a dispersive shock

wave solution from the modulation equations for each equation. The mKdV and

Benjamin-Ono equations are

∂u

∂t
+ 12u2∂u

∂x
+

∂3u

∂x3
= 0 (2.12)

and

∂u

∂t
+ 2u

∂u

∂x
+ PV

1

π

∫

∞

−∞

uyy

y − x
dy = 0, (2.13)

respectively. In the Benjamin-Ono equation PV denotes the Cauchy principal value

of the integral. The mKdV equation arises in water wave theory, for instance waves

on the interface of a two layer fluid when the depths of the two layers are nearly

equal. The Benjamin-Ono equation arises for waves in a two layer fluid when one

of the layers is much deeper than the other33. The soliton solution of the mKdV

equation is

u = As sech
√
2As(x − 2A2

st) (2.14)

and that for the Benjamin-Ono equation is

u =
As

1 +
A2

s

4

(

x− As

2 t
)2 . (2.15)

The application of the approximate theory to the mKdV and Benjamin-Ono

equations is the same as that discussed in the previous subsection for the KdV

equation, so the details will not be given and only the final result will be quoted.

Modulation theory for the mKdV equation34 gives the amplitude of the leading

soliton generated from the initial condition (2.2) as As = 2A, the same as for the

KdV case. The approximate theory based on the mass and energy conservation

equations for the mKdV equation (2.12) gives this lead soliton amplitude as

As =
3π

4
A ≈ 2.356 . . .A. (2.16)

Modulation theory for the Benjamin-Ono equation35 gives the amplitude of the

leading soliton generated from the initial condition (2.2) as As = 4A, while the

approximate theory gives

As =
8

3
A. (2.17)

The error in the lead soliton amplitude for the mKdV equation is 18% and for the

Benjamin-Ono equation is 33%.
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Fig. 2. (Color online) Numerical solution of the mKdV equation (2.12) at t = 60 for the initial
condition (2.2) with A = 0.5.

Figure 2 shows the surface elevation, u versus x, for the mKdV equation (2.12).

Shown is the numerical solution of (2.12) at t = 60 for A = 0.5. The figure shows

a typical bore solution of the mKdV equation. The wave amplitude varies in a

quadratic manner through the bore34, in contrast to the KdV bore, which has a

linear amplitude variation. Again, the numerical amplitude of the lead wave corre-

sponds closely with the modulation theory prediction of 2A = 1. There are about

60 waves in this mKdV bore, compared with the theoretical prediction of N = 20

waves, which was found using a similar method to that described for the KdV

equation. In this case, about one third of the mass of the initial condition is being

converted into mKdV solitons.

2.3. NLS equation

The details of approximating a dispersive shock wave by a train of equal amplitude

solitary waves are different for NLS-type equations than for the KdV-type equations

discussed above. The NLS equation is

i
∂u

∂z
+

1

2

∂2u

∂x2
+ |u|2u = 0. (2.18)

This equation arises in water wave stability theory1 and nonlinear optics36. As it

has an inverse scattering solution29, it has modulation equations from which a bore

solution can be determined28. However, the NLS equation (2.18) is focusing, so

that wavetrains show MI. The modulation equations for the focusing NLS equation

are then elliptic, so no simple wave solution exists. However, the focusing NLS

equation (2.18) does have a bore-type solution before MI sets in. This is because

the modulation equations for the NLS equation (2.18) are hyperbolic in the soliton
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and linear wave limits28. A bore-type solution can then be constructed with a

soliton at the leading edge and linear waves at the trailing edge28. The step initial

condition

u =

{

Aeikx, x < 0,

0, x ≥ 0.
(2.19)

will be used to generate a dispersive shock wave. This initial condition will generate

a bore until MI takes over28. Modulation theory for the NLS equation28 gives the

amplitude of the lead soliton of the dispersive shock wave as As = 2A.

The soliton solution of the NLS equation (2.18) is

u = As sechAs(x− kz) eiA
2

s
z/2+ik(x−kz). (2.20)

As for the KdV-type equations, mass and energy conservation equations for the

NLS equation (2.18) will be used to find an approximation for the amplitude of the

lead soliton of the dispersive shock wave generated by the initial condition (2.19).

These mass and energy conservation equations are

i
∂

∂z
|u|2 + 1

2

∂

∂x
(u∗ux − uu∗

x) = 0 (2.21)

and

i
∂

∂z

(

|ux|2 − |u|4
)

+
1

2

∂

∂x

[

u∗

xuxx − uxu
∗

xx − 2|u|2 (u∗ux − uu∗

x)
]

= 0, (2.22)

respectively. Here the ∗ superscript denotes the complex conjugate. Integrating

these conservation equations between x = ±∞ and using the initial condition (2.19)

gives

d

dz
< M >= kA2,

d

dz
< H >= A2k

(

k2 − 2A2
)

. (2.23)

from the mass and energy conservation equations, respectively. Here M and H are

the integrated mass and energy densities. The NLS soliton solution (2.20) gives

< M >= 2As and < H >= −2

3
A3

s + 2k2As. (2.24)

The conservation relations (2.23) then give

As =
√
6A ≈ 2.45 . . .A. (2.25)

The approximate lead soliton amplitude then differs from the exact amplitude 2A

by 22.5%.

Figure 3 shows the wave amplitude, |u| versus x, for the NLS equation (2.18).

Shown is the numerical solution of (2.19) at z = 50 for A = 1 and k = 0. The

lead wave has amplitude 2, as predicted by modulation theory. For this value of z

the NLS bore is qualitatively similar to the KdV and mKdV bores. However, the

modulation equations form an elliptic system and there is no hyperbolic expansion

fan solution. The NLS solution (2.20), which shows that all solitons are stationary
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Fig. 3. (Color online) Numerical solution of the NLS equation (2.18) at z = 50 for the initial
condition (2.19) with A = 1 and k = 0.

for k = 0, provides an insight into the behaviour of the NLS bore; the individual

waves do not completely separate and are not ordered by amplitude.

In summary, the approximate method developed in this work gives an ampli-

tude of the lead solitary wave of a dispersive shock wave which differs from the

modulation theory value by between 0% and 33%, with 20% being a typical differ-

ence. This approximate method will now be used to find the amplitude of the lead

solitary wave in dispersive shock waves for which the governing equations have no

modulation equations which can be put into Riemann invariant form, or which are

not hyperbolic in the dispersionless limit28.

3. Nematic liquid crystals

The approximate method developed above will now be used to find the amplitude of

the lead solitary wave in a dispersive shock wave in a nematic liquid crystal. Solitary

wave in nematic liquid crystals are termed nematicons25, so this terminology will be

used in the present section. The equations governing the propagation of an optical

beam in a nematic liquid crystal are26,37,38

i
∂u

∂z
+

1

2

∂2u

∂x2
+ 2θ u = 0, ν∇2θ − 2qθ = −2|u|2. (3.1)

Here u is the envelope of the electric field of the optical beam, θ is the rotation of

the nematic molecules due to the optical beam, ν is the elasticity of the nematic

medium and q is related to the intensity of the external field which pre-tilts the

nematic molecules. In the normal experimental regime ν is large39, O(100), so that

the nematic is termed a nonlocal medium in that the nematic response extends
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far beyond the waist of the beam. This nonlocal response means that the nematic

equations (3.1) are not hyperbolic in the non-dispersive limit, so that the method

of El19,20,21 to determine the leading and trailing edges of a bore cannot be used.

The method developed in the present work is then the only one which can be

used to give an approximation to the lead wave of the dispersive shock wave. The

nematicon equations (3.1) are focusing, so that their modulation equations would

be elliptic and so no simple wave dispersive shock wave solution exists. As for the

NLS equation of Section 2.3 a bore-type solution can be found before MI sets in28.

In this context, the large nonlocality ν can delay the onset of MI to such an extent

that it is not observed over experimental nematic cell lengths unless the optical

power is raised above the usual low milliwatt levels27,40,41.

As for the NLS equation, the simplest initial condition to generate a dispersive

shock wave is the jump initial condition

u =

{

Aeikx, x < 0,

0, x > 0,
θ =

{

A2

q , x < 0,

0, x > 0
(3.2)

The initial condition for θ has been chosen to satisfy the director equation, the

second of (3.1), in x < 0.

As for the KdV-type equations and the NLS equation, mass and energy con-

servation laws for the nematicon equations (3.1) will be used to determine the

amplitude of the lead nematicon of a dispersive shock wave. These conservation

equations are

i
∂

∂z
(|u|2) + 1

2

∂

∂x
(u∗ux − uu∗

x) = 0, (3.3)

i
∂

∂z
(|ux|2 − 4θ|u|2 + νθ2x + 2qθ2) +

1

2

∂

∂x
(u∗

xuxx

−uxu
∗

xx − 4θu∗ux + 4θuu∗

x − 4iνθxθz) = 0, (3.4)

respectively. All the previous equations have an exact soliton solution. However,

the nematicon equations (3.1) have no such exact solitary wave solution. In this

case, a variational approach has been found to give a good approximation to the

steady nematicon31. This variational approximation is based on the trial functions

u = As sech
x− kz

w
ei(kx+σz), θ = α sech2

x− kz

β
. (3.5)

for the electric field u and director angle θ. Here α is the amplitude of the director

response, w and β are the widths of the two beams in the electric field and the

nematic and σ is the propagation constant. It is found that the amplitude and
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width of the nematicon are determined by

α =
4

3w(I − wIw)
, (3.6)

32να

15β
+

16

3
qαβ − A2

sI = 0, (3.7)

16να2

15β2
− 8

3
qα2 + αA2

sIβ = 0, (3.8)

σ = −k2

2
− 1

6w2
+

αI

4w
. (3.9)

I is the integral

I(w, β) =

∫

∞

−∞

sech2(
x

β
) sech2(

x

w
) dx, (3.10)

which cannot be evaluated unless w = β, which is the case in the local limit ν = 0.

Integrating the mass and energy conservation equations (3.3) and (3.4) between

x = ±∞ gives

d

dz
< M >= kA2,

d

dz
< H >= kA2

(

k2 − 4
A2

q

)

(3.11)

on using the initial condition (3.2) to evaluate the flux terms at x = ±∞. The

variational approximation (3.5) then gives the mass and energy densities as

< M >= 2A2
sw, < H >=

2A2
s

3w
+

16να2

15β
+ 2k2A2

sw +
8

3
qα2β − αA2

sI. (3.12)

As for the NLS equation of Section 2.3, taking the ratio of these conservation

relations gives the equation

2A2
s

3w
+

16να2

15β
+

8

3
qα2β − αA2

sI = −8A2

q
A2

sw. (3.13)

The amplitude of the lead nematicon of the bore is found by solving (3.13) together

with (3.6)–(3.9). This represents a set of transcendental equations which must be

solved numerically.

Figure 4 displays the beam amplitudes, As and α, versus ν. The other parame-

ters are A = 0.25, q = 1 and k = 0. Shown are the predictions of the approximate

theory and the numerical results. The numerical estimate is the maximum ampli-

tude in the bore averaged from the z position at which the first nematicon has

formed until the z value at which MI dominates. An averaging process is needed as

there is some oscillation in the profile amplitude while the bore develops.

For small ν the undular bore is qualitatively similar to that for the NLS equation

(see figure 3), while for large ν the nematicons which are generated interact with

each other nonlocally due to the broad response of the nematic causing a wide

potential well enclosing all the nematicons in the bore, see figure 431. Hence, for

small ν the maximum amplitude does not vary much once it is fully formed, while

for large ν the maximum amplitude varies with z since the waves interact.
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Fig. 4. (Color online) Beams amplitudes versus ν. Shown are As (upper solid line) and α (lower
solid line) from the approximate theory. Numerical estimates for the average maximum amplitude
(squares). The other parameters are A = 0.25, q = 1 and k = 0.

The general trend is that, as ν increases, the electric field amplitude increases

and that of the director decreases. For small ν the theoretical prediction for the

electric field amplitude overestimates the numerical amplitude by about 20%, which

is consistent with the NLS limit (as ν → 0) discussed in Section 2.3. For larger ν the

comparison between the approximate theory and numerical solutions is excellent,

with differences of less than 5%.

4. Colloids

Let us now consider optical beam propagation in another nonlinear medium, a

colloid. The system of equations governing the evolution of the beam is similar to

that for beam propagation in a nematic liquid crystal of Section 3. These equations

are42,43

i
∂u

∂z
+

1

2

∂2u

∂x2
+ (η − η0)u = 0, |u|2 = g(η)− g0,

with g(η) =
3− η

(1 − η)3
+ ln η, g0 = g(η0). (4.1)

Again, u is the envelope of the electric field of the optical beam. The concentration

of colloidal particles is given by η, termed the packing fraction. The refractive index

of the colloid depends on this concentration through the equation of state g(η). η0
is the background packing fraction of the medium, in the absence of solitary waves.

As for the NLS equation of Section 2.3, a dispersive shock wave is generated by the
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jump initial condition

u =

{

Aeikx, x < 0,

0, x > 0,
η =

{

ηm, x < 0,

η0, x > 0.
(4.2)

To satisfy the colloid equations (4.1) the particle concentration in x < 0, ηm, must

satisfy A2 = g(ηm)− g0.

As for the nematic equations of Section 3 there is no exact solitary wave solution

of the colloid equations (4.1). Again, a variational method can be used to obtain a

good approximation to this solitary wave44, based on the trial functions

u = As sech
x− kz

w
eiσz+ikx, η = η0 + α sech2

x− kz

β
(4.3)

for the electric field u and the particle concentration η. This variational approxi-

mation gives that the steady solitary wave is determined by44

σ = − 1

6w2
+

αΩ1

w
,

1− 3αw(Ω1 − w
∂Ω1

∂w
) = 0, (4.4)

4A2
sα(Ω1 − β

∂Ω1

∂β
)− β(α

dΞ1

dα
− Ξ1)− 4β(α

dΘ1

dα
−Θ1) = 0,

4αA2
s

∂Ω1

∂β
− Ξ1 − 4Θ1 + 4α (1 + g0) = 0.

Here

Ω1(w, β) =

∫

∞

0

sech2
ζ

β
sech2

ζ

w
dζ,

Ξ1(α) = 2

∫

∞

0

[

4− 2η0 − 2α sech2 ζ

(1− η0 − α sech2 ζ)2
− 4− 2η0

(1− η0)2

]

dζ, (4.5)

Θ1(α) =

∫

∞

0

[

η0 ln(1 +
α

η0
sech2 ζ) + α sech2 ζ ln(η0 + α sech2 ζ)

]

dζ.

The amplitude of the lead solitary wave of the dispersive shock wave generated by

the initial condition (4.2) will again be determined by mass and energy conservation

equations. The mass conservation equation for (4.1) is

i
∂

∂z
|u|2 + 1

2

∂

∂x
(u∗ux − uu∗

x) = 0, (4.6)

and the energy conservation equation is

i
∂

∂z

[

|ux|2 − 2 (η − η0) |u|2 +
4− 2η

(1− η)
2 − 4− 2η0

(1− η0)
2

+ 2η ln η − 2η0 ln η0 − 2 (η − η0) (1 + g0)]

+
1

2

∂

∂x
[u∗

xuxx − uxu
∗

xx − 2 (η − η0) (u
∗ux − uu∗

x)] = 0. (4.7)
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These mass and energy equations are integrated between x = ±∞ using the initial

jump (4.2) to give

d

dz
< M >= kA2,

d

dz
< H >= kA2[k2 − 2(ηm − η0)]. (4.8)

Dividing the conservation results (4.8) and integrating, on noting that there are

no solitary waves initially, gives an equation for the amplitude of the lead solitary

wave of the dispersive shock wave

< H >=
[

k2 − 2(ηm − η0)
]

< M > . (4.9)

The approximate solitary wave solution (4.3) is now used to calculate the mass M

and energy H , resulting in

< M >= 2A2
sw,

< H >=
2

3

A2
s

w
+ 2k2A2

sw − 4αA2
sΩ1 + βΞ1 + 4βΘ1 − 4αβ(1 + g0), (4.10)

so that the final equation determining the amplitude of the lead solitary wave of

the dispersive shock wave is

2

3

A2
s

w
− 4αA2

sΩ1 + βΞ1 + 4βΘ1 − 4αβ(1 + g0) + 4A2
sw(ηm − η0) = 0, (4.11)

The amplitude of the lead colloidal solitary wave in the bore is found by solving

(4.4) and (4.11). This represents a set of transcendental equations which must be

solved numerically. The solution of these transcendental equations shows that three

qualitatively different solitary wave amplitude As versus jump height A diagrams

are possible, depending on the background packing fraction45. For large background

packing fractions a single stable solution branch occurs. At moderate values an

S-shaped response curve results, with multiple solution branches, while for small

values the upper solution branch separates from the middle unstable branch. Hence,

for low to moderate values of the background packing fraction the dispersive shock

bifurcates from the low to the high power branch as the jump height is increased.

These multiple steady-state response diagrams, also typically found in combustion

applications, are unusual in applications involving solitary waves45.

Figure 5 shows the electric field amplitude, |u| versus x, for the colloid equations

(4.1). Shown is the numerical solution for the initial condition (4.2) at z = 1000. The

parameter values are the initial and background packing fractions ηm = 2.43×10−2

and η0 = 1 × 10−2, respectively. Also A = 1 and k = 0. The packing fraction

η is not shown as its profile is qualitatively the same as that for |u|. For this

propagation distance seven large solitary waves have formed, with the largest wave,

with a = 2.43, sixth from the front of the bore. As for nematic bores, the waves

interact with each other in a complicated manner and they are not ordered by

amplitude. The maximum amplitude in the bore, averaged over z, is 2.76. This

compares well with the prediction of the approximate solution, a = 2.44, which is

within 12% of the numerical prediction.
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Fig. 5. (Color online) Numerical solution of the colloid equation (4.1) at z = 1000 for the
initial condition (4.2). The initial and background packing fractions are ηm = 2.43 × 10−2 and
η0 = 1× 10−2. The other parameters are A = 1 and k = 0.

5. Conclusions

An approximate method for determining the amplitude of the lead solitary wave in

an undular bore has been developed. The method, which is based on conservation

laws, is benchmarked using integrable equations for which exact results are known.

It was then applied to a range of equations governing nonlinear optical media for

which exact results are not possible. The method has a wide applicability, giving

accurate results for systems with stable undular bore solutions and also for appli-

cations, from nonlinear optics, governed by focusing equations. Focusing equations

are subject to MI, but our approximate method gives accurate predictions for the

bore which develops at short propagation distances before the onset of MI. The

method should also be applicable to other nonlinear optical media.
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