35 research outputs found

    Extracellular Vesticles in Acute Respiratory Distress Syndrome: Understanding Protective and Harmful Signaling for the Development of New Therapeutics

    Get PDF
    Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more thorough understanding of the variegated and cell-specific functions of EVs may lead to the development of safe and effective therapeutics. In this review, we have collected evidence of EVs role in ARDS, revise the main mechanisms of production and internalization and summarize the current therapeutical approaches that have shown the ability to modulate EV signaling

    Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment

    Get PDF
    When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism's energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose). Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic. Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders

    Endothelial Cell-Derived Extracellular Vesicles Impair the Angiogenic Response of Coronary Artery Endothelial Cells

    Get PDF
    Cardiovascular disease (CVD) is the most prominent cause of death of adults in the United States with coronary artery disease being the most common type of CVD. Following a myocardial event, the coronary endothelium plays an important role in the recovery of the ischemic myocardium. Specifically, endothelial cells (EC) must be able to elicit a robust angiogenic response necessary for tissue revascularization and repair. However, local or distant cues may prevent effective revascularization. Extracellular vesicles (EV) are produced by all cells and endothelium is a rich source of EVs that have access to the main circulation thereby potentially impacting local and distant tissue function. Systemic inflammation associated with conditions such as obesity as well as the acute inflammatory response elicited by a cardiac event can significantly increase the EV release by endothelium and alter their miRNA, protein or lipid cargo. Our laboratory has previously shown that EVs released by adipose tissue endothelial cells exposed to chronic inflammation have angiostatic effects on naïve adipose tissue EC in vitro. Whether the observed effect is specific to EVs from adipose tissue endothelium or is a more general feature of the endothelial EVs exposed to pro-inflammatory cues is currently unclear. The objective of this study was to investigate the angiostatic effects of EVs produced by EC from the coronary artery and adipose microvasculature exposed to pro-inflammatory cytokines (PIC) on naïve coronary artery EC. We have found that EVs from both EC sources have angiostatic effects on the coronary endothelium. EVs produced by cells in a pro-inflammatory environment reduced proliferation and barrier function of EC without impacting cellular senescence. Some of these functional effects could be attributed to the miRNA cargo of EVs. Several miRNAs such as miR-451, let-7, or miR-23a impact on multiple pathways responsible for proliferation, cellular permeability and angiogenesis. Collectively, our data suggests that EVs may compete with pro-angiogenic cues in the ischemic myocardium therefore slowing down the repair response. Acute treatments with inhibitors that prevent endogenous EV release immediately after an ischemic event may contribute to better efficacy of therapeutic approaches using functionalized exogenous EVs or other pro-angiogenic approaches

    STAT4 deficiency reduces the development of atherosclerosis in mice

    Get PDF
    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses

    STAT4 deficiency reduces obesity-induced insulin resistance and adipose tissue inflammation

    Get PDF
    Signal transducer and activator of transcription (STAT) 4 is one of the seven members of the STAT family. STAT4 has a prominent role in mediating interleukin-12-induced T-helper cell type 1 lineage differentiation. T cells are key players in the maintenance of adipose tissue (AT) inflammation. The role of STAT4 in obesity and AT inflammation is unknown. We sought to determine the role of STAT4 in AT inflammation in obesity-induced insulin resistance. We studied STAT4-null mice on the C57Bl6/J background. We have found that STAT4(-/-)C57Bl6/J mice develop high-fat diet-induced obesity (DIO) similar to wild-type controls, but that they have significantly improved insulin sensitivity and better glucose tolerance. Using flow cytometry and real-time PCR, we show that STAT4(-/-) mice with DIO produce significantly reduced numbers of inflammatory cytokines and chemokines in adipocytes, have reduced numbers of CD8(+) cells, and display increased alternative (M2) macrophage polarization. CD8(+) cells, but not CD4(+) cells, from STAT4(-/-) mice displayed reduced in vitro migration. Also, we found that adipocyte inflammation is reduced and insulin signaling is improved in STAT4(-/-) mice with DIO. We have identified STAT4 as a key contributor to insulin resistance and AT inflammation in DIO. Targeting STAT4 activation could be a novel approach to reducing AT inflammation and insulin resistance in obesity

    A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue

    Get PDF
    The Twist proteins (Twist-1 and -2) are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult adipose tissue and its constitutive expression is significantly higher in subcutaneous vs. visceral fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in adipose tissue are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of adipose tissue and to discuss the potential mechanisms suggesting a role for Twist1 in adipose tissue metabolism, inflammation and remodeling

    Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells

    No full text
    Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics
    corecore