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1. Abstract  
 
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by 
increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. 
ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a 
mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up 
to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate 
intercellular communication and play a major role in ARDS pathophysiology. Indeed, they 
participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage 
activation, and also in the development of a hypercoagulable state. A more thorough 
understanding of the variegated and cell-specific functions of EVs may lead to the development 
of safe and effective therapeutics. In this review, we have collected evidence of EVs role in 
ARDS, revise the main mechanisms of production and internalization and summarize the 
current therapeutical approaches that have shown the ability to modulate EV signaling. 
 
Keywords: acute respiratory distress syndrome (ARDS), Acute Lung Injury (ALI); extracellular 
vesicles (EVs), alveolo-capillary permeability, therapeutics, EVs biogenesis, EVs internalization. 
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2. Introduction 
 
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by 
cough, difficulty breathing and shortness of breath (Diamond and Sanghavi, 2023). ARDS was 
first described in 1967. Formal criteria were established in 1994 and included a ratio of arterial 
partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) less than 200 mmHg. In 
2011 the definition was revised into what is now referred to as the “Berlin definition.” (Ashbaugh 
et al., 1967; Walsh and Van Patten, 1994; ARDS Definition Task Force et al., 2012). Criteria 
include: 1) acute onset; 2) presence of bilateral opacities; 3) respiratory failure not of cardiac 
origin; and 4) a notable impairment of oxygenation reflected by the PaO2/FiO2 ratio <300 mmHg. 
The current therapeutic approaches include assisted ventilation, corticosteroid therapy, proper 
fluid management and veno-venous extracorporeal life-support (Menk et al., 2020). However, 
the mortality of ARDS is still remarkably high and can reach 45% in severe cases (Bellani et al., 
2016). ARDS incidence ranges from 64.2 to 78.9 cases/100,000 person-years in the US, but 
due to the ongoing SARS-CoV-2 pandemic, it has increased up to ten-fold, highlighting the need 
for new therapeutic interventions (Rawal et al., 2018; Diamond Sanghavi, 2023). Unfortunately, 
hundreds of drug candidates that have been tested clinically in the past decade have produced 
minimal or even negative results. This limited therapeutic success may be explained by the fact 
that the pathophysiology of ARDS is complex, heterogeneous, and incompletely understood. It 
is normally triggered by a pulmonary insult or systemic injury, which elicits a strong inflammatory 
response that impacts the alveolo-capillary structures. This results in increased lung vascular 
permeability, fluid leak into the alveolar spaces, and consequent inefficient exchange of oxygen 
and CO2, resulting in acute respiratory failure (Rawal et al., 2018). Animal models of ARDS 
have demonstrated that multiple insults, such as lipopolysaccharides, bacteria, or microemboli, 
play a role in increasing pulmonary endothelial permeability and fluid extravasation in the lungs 
(Matthay et al., 2019). Injury of the alveolo-capillary barrier is indeed a crucial step in the 
pathophysiology of ARDS and has been attributed to increased levels of cytokines, chemokines, 
adhesion molecules, damage-associated molecular patterns (DAMPs), and thrombin (Meyer et 
al., 2021). These mediators cause the transition of the endothelium to a leaky state, that allows 
migration of inflammatory cells and fluid into the alveolar structures (Sun et al., 2013; Millar et 
al., 2016). This process involves cytoskeletal rearrangements in endothelial cells and disruption 
of the tight junctions between neighboring endothelial cells, which ultimately causes the 
breakdown of monolayer integrity (Dudek and Garcia, 2001; London et al., 2010). The 
endothelial dysfunction is further exacerbated by the apoptotic mechanisms induced by the 
immune cells recruited to the areas of pulmonary inflammation (Fujita et al., 1998; Abadie et al., 
2005; Gill et al., 2015).  
An additional mechanistic framework that can contribute to disruption of the endothelial and 
epithelial barriers is the one provided by the new paradigm of cell-cell communication via 
extracellular vesicles (EVs). It is broadly recognized that EVs are a key component of the 
intracellular signaling network that takes place in multicellular organisms (Sanwlani & Gangoda, 
2021). 
EVs are small liposome-like particles that contain proteins, nucleic acids, lipids, and various 
metabolites that exert their signaling properties through the release of their cargo into recipient 
cells. As of 2023, the Vesiclepedia repository includes nearly 350,000 proteins, 27,500 mRNAs, 
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10,500 microRNAs (miRNAs), and 639 lipids found in EVs, based on over 1,250 studies in more 
than 40 species (Kalra et al., 2012). miRNA, which are a type of non-coding RNA that aid in the 
regulation of gene expression and thus determine EVs’ capability to modulate cellular immune 
responses (Sanwlani and Gangoda, 2021), increase or decrease inflammation, and impact on 
tissue repair and proliferation (Buzas et al., 2014; Oggero et al., 2019; Li et al., 2021; Takeuchi, 
2021; Spiers et al., 2022). The lung, is one of the organs that benefit from the immunoregulatory 
activity of EVs under homeostatic conditions (Haggadone and Peters-Golden, 2018; Letsiou and 
Bauer, 2018; Su et al., 2020). Also, EVs may take on a preventive anti-pathogenic role or 
modulate differentiation in lung epithelial cells (Ismail et al., 2013, Fujita et al., 2018). However, 
though normally protective and homeostatic in nature, the activity of these EVs can change 
drastically during inflammation, shifting the content of their cargo and promoting inflammatory 
cascades, endothelial hyperpermeability and hypoxia (Fig. 1).  
Indeed, circulating EVs in patients with ARDS express on their surface Sphingosine 1-
phosphate receptor (S1PR3) which has been suggested as a possible new clinically-relevant 
biomarker (Sun et al., 2012). These patients display an increased number of circulating EVs, of 
mainly neutrophil and endothelial origin, compared to healthy controls (Li et al., 2015a), and 
have been shown to play a critical role in inducing cellular permeability of the lung endothelium 
(Densmore et al., 2006), as well as propagation of the inflammatory cascade by eliciting 
production of IL-1β and TNF-α (Buesing et al., 2011). Thus, by modulating cellular homeostasis 
during health and promoting inflammatory cascades in ARDS, EVs may act as a “double-edged 
sword”; the beneficial or harmful signals propagated through EVs may depend on the body’s 
systemic responses. A thorough understanding of their effects in health and disease, as well as 
tracking their cellular origin and uptake by cells, is necessary for the development of a new 
class of therapeutics that target EV signaling. In this review, we have provided an overview of 
the profound shift in EV population numbers and cargo observed in leukocytes, platelets, 
epithelial and endothelial cells during ARDS. In addition, we described the current drug 
candidates that target biogenesis and uptake of EVs that could represent novel targeted 
approaches for mitigating lung pathology. 

 
 

3. Extracellular vesicles; a short history 
 

Some of the first reported observations referencing EVs can be traced back to 1945 and the 
work of Dr. Erwin Chargaff, when he described encountering a particulate fraction that 
partitioned at 31,000 x g and which expressed elevated clotting potential (Chargaff and West, 
1946). In 1967, Dr. Peter Wolf described and published electron microscopy images of his 
experience interacting with minute particulates separable via high-speed centrifugation derived 
from, but distinct from, platelets. He referred to these particles as “platelet dust” (Wolf, 1967). 
The work of Dr. Neville Crawford would follow suit, publishing additional vesicular images and 
demonstrating the capability to carry lipids, contractile proteins, and adenosine triphosphate 
(Crawford, 1971). Nunez and Gershon next contributed in 1974 by becoming some of the first to 
describe multivesicular bodies in proximity to an apical membrane, and to propose a 
mechanism of exosome formation and release via fusion with the plasma membrane (Nunez et 
al., 1974). Finally in 1983, two papers, published the same week, reported that the transferrin 
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receptors of reticulocytes are associated with small ~50 nM vesicles before being released into 
the extracellular space (Pan and Johnstone, 1983). Notwithstanding these important historic 
hallmarks, the field has witnessed tremendous growth for the past 2 decades, when the 
pathways of EV generation, function and potential therapeutic applications started to emerge. 
Currently, the field continues to rapidly expand and, as such, has encountered numerous 
successes, but is also hindered by challenges and areas of disagreement. One of the main 
challenges remains understanding the mechanism by which EV circulate between donor and 
recipient cells and how the release of their cargo impacts cellular signaling in recipient cells. 
 
 
 

4. Extracellular vesicles classification 
 

EVs can circulate through blood and lymphatic vessels or via the extracellular medium of 
tissues, and upon reaching the intended destination they are internalized and deliver their cargo 
to the recipient cells (Gurung et al., 2021; Dilsiz, 2022). There are several cellular mechanisms 
for uptake, including membrane fusion, phagocytosis, receptor-mediated endocytosis, and 
micropinocytosis (McKelvey et al., 2015). EVs are subdivided into exosomes and microvesicles 
(Akers et al., 2013). 
Most exosomes are formed when endocytosis or the trans-Golgi network generates a region of 
intracellular space encapsulated by a lipid-bilayer called an endosome (Teng & Fussenegger, 
2020). Enzyme-mediated invagination of this space in proximity to genetic material or proteins 
leads to additional, smaller encapsulated regions called intraluminal vesicles, each containing 
various blends of the aforementioned materials. The endosome is then ferried to the cell 
membrane for release by a series of complexed proteins, known as endosomal sorting 
complexes required for transport machinery (ESCRT), where the intraluminal vesicles are 
secreted to the extracellular space (van Niel et al., 2022).  
Microvesicles may form from plasma membrane lipid rafts or by enzyme mediated evagination 
of the cell’s plasma membrane. This outward budding and fission of the plasma membrane 
occurs as a result of regulated interactions between the process of phospholipid redistribution 
and cytoskeletal protein contraction (D'Souza-Schorey and Clancy, 2012). Initiation of the 
process is generally regulated by the activity of flippases and floppases, whereby they mediate 
remodeling of  the inner or outer leaflets of the plasma membrane via mobility of phospholipids 
(Zwaal and Schroit, 1997; Bevers et al., 1999; Leventis and Grinstein, 2010). After 
phosphatidylserine is translocated to the outer leaflet of the membrane, the membrane will 
begin to bud outward and form vesicles that are pinched off and released via cytoskeletal actin-
myosin contraction (Hugel et al., 2005; McConnell et al., 2009; Muralidharan-Chari et al., 2009).  
Some authors also consider apoptotic bodies as part of the EV classification. They form during 
apoptosis (Elmore, 2007), enclosing the remains of nuclear chromatin into membrane vesicles 
(Kerr et al., 1972), and have larger sizes ranging from 500 to 4000 nm (Ihara et al., 1998; 
Hristov et al., 2004; Taylor et al., 2008).  
More recently, other EV subpopulations have been characterized, including secretory 
amphisomes, exophers, and autophagosomes. While exophers are big (~4um) vesicles 
released by cells and able to contain organelles such as mitochondria and lysosomes, 
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amphisomes and autophagosomes are both involved in cellular autophagy. Indeed, 
amphisomes are intermediate organelles produced through the fusion of endosomes with 
autophagosomes. They belong to the retrograde cellular signaling and further fuse with 
lysosomes for cargo degradation (Ganesan and Cai, 2021). Finally, the newly discovered 
migrasomes are EV that are formed and released from retracting fibers of cells and play a role 
in either disposing of damaged organelles or delivering molecules that promote cellular 
proliferation and tumor growth (Yu and Yu, 2022). As the number of EV biogenesis pathways is 
growing, the diversity of EV populations follows and offers opportunities to link them with 
specific mechanisms that will ultimately improve the nomenclature and the reporting related to  
EV biology. In the following sections, we will focus on homeostatic and pathologic roles of EVs 
from different cellular sources on lung function and in acute lung injury.  
 

5. Role of EVs in lung physiology and acute lung injury  
 
5.1. Endothelial cell-derived EVs 

 
Endothelial cells produce EVs that have been associated both with protective and harmful 
effects. We have previously shown that endothelial-derived EVs isolated in physiological and 
inflammatory conditions carry different cargos and exert opposing effects on the coronary 
vascular endothelium. In some cases, endothelial cell derived EVs promote healing after injury, 
while in others, they elicit increased permeability and loss of monolayer integrity (Carter et al., 
2022). Some of the beneficial, homeostatic effects of exosomes released from endothelial 
progenitor cells (EPC) include reduction of inflammatory cell recruitment, cytokine/chemokine 
expression, reactive oxygen species (ROS) production, and protein concentrations in 
bronchoalveolar lavage (BAL) fluid in animal models of lung injury (Wu et al., 2018; Zhou et al., 
2019). Additionally, EPC-derived exosomes downregulate expression of multiple regulatory 
genes involved in apoptosis, DNA repair, and senescence, facilitating proliferation and migration 
of endothelial cells (Liu et al., 2022). This mechanism occurs by transferring EVs rich in miR-
126, which modulates Sprouty-related, EVH1 domain-containing protein 1 (SPRED1), with 
consequent activation of Raf/ERK signaling and antiapoptotic effects (Kerr et al., 1972). 
However, endothelial-derived EVs can have detrimental effects in acute lung injury (ALI) and 
ARDS. Intravenous injection of endothelial EVs isolated from animals exposed to dust 
particulates was found to elevate BAL fluid and plasma TNFα and IL-1β levels (Li et al., 2015a). 
EVs of endothelial origin released during inflammation contain miRNA that can promote the 
expression of VEGFRβ in the recipient pericyte cells, suggesting they play a role in 
inflammation-induced endothelial permeability. Therefore, limiting production or internalization of 
endothelial exosomes may constitute an attractive new therapeutic target (Yamamoto et al., 
2015). In most cases of sepsis and ARDS, injury to the endothelium is the earliest pathological 
incident (Matthay et al., 2019). The endothelium can sustain injury via stimuli such as 
plasminogen activated inhibitor-1 (PAI-1) and mechanical stress, resulting in a release of EVs 
(Densmore et al., 2006; Letsiou et al., 2015). These EVs can inhibit the release of nitric oxide 
and arteriole vasodilation [64]. They have also been demonstrated to cause inflammatory lung 
injury in vivo by promoting alveolar neutrophilic infiltration, pulmonary edema, increased 
production of TNF-α, and increasing lung endothelial permeability (Buesing et al., 2011; Li et al., 
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2015b). Endothelial microparticles are released as a result of ALI and have been demonstrated 
to carry enriched levels of moesin, a protein similarly involved with increased endothelial 
permeability (Letsiou et al., 2015). Thus, during inflammation EVs display profound shifts in their 
cargo content; instead of maintaining cellular and tissue homeostasis they promote the 
inflammatory cascade, increased permeability, and cytokine release (Fig. 2). 

 
5.2 Epithelial cell-derived EVs 
 

EVs produced by epithelial, bronchial, and alveolar cells have mostly demonstrated protective 
effects on the epithelium and immune cell infiltration and activation. During hyperoxia, lung 
epithelium-derived EVs are released and can be found in BAL fluid, a mechanism mediated by 
endoplasmic reticulum stress (Moon et al., 2015). Macrophages exposed to these EVs have 
displayed an increased expression of macrophage inducible protein-2 (MIP-2). When mice were 
treated intranasally with these same EVs, an augmented migration of macrophages and 
neutrophils was observed. The alveolar macrophage activation is largely induced by EVs 
containing caspase-3, which stimulates macrophages through the Rho associated coiled-coil 
protein kinase 1 (ROCK1) pathway (Moon et al., 2015).  
Wnts are a family of hydrophobic, Cys-rich, secreted glyco-lipoproteins that control 
developmental processes, stem cell proliferation, and pulmonary repair (MacDonald et al., 2009; 
Kikuchi et al., 2011; Patel et al., 2019). Wnt-5A and its target genes in ARDS were found to be 
increased in marked collagen deposition, supporting the theory that Wnt-5A and the β-catenin 
pathway aid in lung repair (Königshoff et al., 2008; Crosby and Waters, 2010). Modulation of  
Wnt signaling has been related to the production of EVs by human bronchial epithelial cells. 
These EVs contain a particular cargo of miRNAs (O'Brien et al., 2018). One example of miRNA 
target gene is TGF-β  which  effects on myofibroblast differentiation and epithelium senescence 
(Kadota et al., 2021). Exposure to acid causes the lung epithelium to release microvesicles that 
contain significantly elevated amounts of miRNA encapsulated as their cargo, including miR-17 
and miR-221 (Lee et al., 2017). Streptococcus pneumoniae is a common cause of ALI and 
ARDS. Pneumolysin, released from epithelial cells, represents an innate mechanism of 
protection against this pathogen. One of the mechanisms of pneumolysin is related to its effects 
on inducing alveolar epithelial cells to release microvesicles containing mitochondria, that when 
absorbed by neutrophils, play a role in modulating ROS production, cellular activation, and the 
consequent injury to cells and tissues (Letsiou et al., 2021). 

 
 
5.3 White Blood Cell-derived EVs 

 
Leukocytes or White Blood Cells (WBCs) are the main effectors of the immune response and 
participate in the defense against bacteria, viruses, parasites, and toxins. Besides their 
protective role, during ARDS, WBCs can exert a series of deleterious effects by uncontrollably 
producing inflammatory cytokines such as TNF-α, IL-6 and IL-1β that damage alveoli or 
endothelial cells, and participate in the accumulation of BAL fluid (Huppert et al., 2019). WBCs 
have been shown to produce EVs in both resting conditions and during immune responses to 
inflammatory stimuli. Resting granulocytes release EVs with an anti-inflammatory profile, able to 
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decrease IL-1β, TNFα, IL-6, IL-8, IL-10, IL-12, but increasing the levels of TGF-β and resolving 
mediators (Kolonics et al., 2021). EVs derived from granulocytes have also been shown to 
modulate the production of ROS in a stimulus-dependent manner. Conversely, when WBCs 
encounter foreign pathogens marked with opsins such as antibodies, they ramp up EV 
production, and the makeup of the EV cargo changes.  In this situation, the EVs cause 
augmentation of ROS production and increasing expression of E-selectin and Vascular Cell 
Adhesion protein1 (VCAM-1) (Kolonics et al., 2021). Other para-physiological and pathological 
insults can also stimulate granulocyte-related production of EVs. Indeed, during exercise, 
WBCs, platelets, endothelial cells, and antigen presenting cells release significantly more EVs 
than in resting conditions (Brahmer et al., 2019). Immortalized cells, isolated from patients with 
acute monocytic leukemia, generate a larger number of EVs during cell death compared to 
normal cells, a mechanism that could be responsible for the strong inflammation observed in 
these patients and the spread of malignant cells through the body (Baxter et al., 2019).  
Leukocytes represent a diverse population of cells, which in turn have varied EV cargo. Alveolar 
macrophage-derived EVs, for example, carry various miRNAs, Long non-coding RNAs 
(LncRNA), and effector molecules such as CCL3, IFN-𝛾, TNF-α, and ERAP1 (Soni et al., 2016; 
Danesh et al., 2018). Granulocyte-derived EVs carry factors that have been shown to activate 
monocytes and also to upregulate TNF-α (Jong et al., 2017). EVs produced by natural killer 
cells contain cytotoxic proteins that act directly on pathogens and targeted cells (Tucher et al., 
2018). Finally, EVs produced by T-lymphocytes carry a cargo composed of multiple cytoskeletal 
remodeling proteins such as gamma- and beta- actins, 14-3-3 protein theta, myosin heavy chain 
9, protein phosphatase 1 regulatory subunit 7, and major vault protein (Tucher et al., 2018). 
Taken together, this data suggests that different cells of the immune system produce EVs with 
specific cargos and function, and while macrophage-, granulocyte- and NK cell-derived EVs 
target pathogens and promote the immune response, EVs produced by regulatory T-
lymphocytes, after resolving inflammation, may deliver cytoskeletal components in an attempt to 
restore endothelial or tissue homeostasis (Bayless and Johnson, 2011; Kása et al., 2015; 
Yadunandanan Nair et al., 2022). It is clear then, that EVs represent a crucial and cell-specific 
communication mechanism responsible for the maintenance of homeostatic balance during 
resting conditions, but that could be easily activated when necessary and participate in the 
inflammatory and immune responses. 
 

 
5.4. Platelet-derived EVs 

 
Platelets may also contribute to the pathogenesis of ARDS. While primarily known for their 
involvement in coagulation, platelet signaling is involved in the modulation of different immune 
response mechanisms, some of which are mediated by the release of EVs. Platelet-derived EVs 
represent the majority of EVs found in the blood under normal physiological conditions (Kerris et 
al., 2020). Their EV release is mediated by thrombin, or other physiologic agonists, able to 
activate platelets (Heijnen et al., 1999; French et al., 2020). Some of these vesicles will have 
procoagulant effects, carrying prothrombin, annexin-V, and factor X (Kerris et al., 2020; Puhm et 
al., 2021). Interestingly, patients with ARDS display lung EVs containing Tissue Factor (TF), the 
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main initiator of the pro-coagulant cascade. This may be responsible for the hypercoagulable 
state observed in patients with ARDS (Bastarache et al., 2009). 
Other platelet-derived EVs will carry different cargo and take on more immunomodulatory roles, 
beginning with the promotion of vasodilation to increasing the population of inflammatory cells 
able to reach the site of infection by upregulating cyclooxygenase-2 expression (Barry et al., 
1999). Platelet EVs have been shown to activate leukocytes or to communicate with mast cells 
by carrying mitochondria that are converted to inflammatory mediators, transporting cytokines, 
or upregulating molecules that stimulate lymphocyte function like CD40 (endothelial ligand) 
(Sprague et al., 2008; Boudreau et al., 2014; Yadav and Kor, 2015; Puhm et al., 2021). Platelet 
EVs will further assist the arriving leukocytes by releasing EVs carrying P-selectin, a molecule 
that mediates cell adhesion (Kuravi et al., 2019). As inflammation progresses, activated 
platelets will activate other platelets, in turn creating a positive feedback loop (Yadav and Kor, 
2015). As the alveoli are infiltrated and the endothelium becomes more permeable, fluid leaks 
in, preventing gas exchange. The platelets continue to release EVs with miRNA-223 which may 
moderate the severity of the ongoing immune response and endothelial permeability (Laffont et 
al., 2013; Miyazawa et al., 2019; Roffel et al., 2020), miRNA-24 to possibly induce apoptosis in 
damaged endothelium (Fiedler et al., 2011; Michael et al., 2017), and miRNA-126 to promote 
Hypoxia inducible factor 1α (HIF-1α) (Alique et al., 2019; Gasperi et al., 2019).   
 

 
6. Therapeutic approaches for EVs 

 
Our assertion thus far has been that EVs contribute to the pathology of ARDS. In the next 
section we will discuss several drug candidates or approved therapies that are reported to 
inhibit EV biogenesis, release, or uptake (Fig. 3).  
 
 

6.1. Drugs that affect biogenesis 
 
As previously discussed, EV biogenesis can occur independently of, or through, the ESCRT 
pathway. Thus, modulation of the ESCRT pathway has been considered as a therapeutic 
approach.  Manumycin A inhibits Ras activation, whose effectors include ESCRT complex 
components (Zheng et al., 2012; Datta et al., 2017). Imatinib also has an inhibitory effect on Ras 
activation, but more indirectly by targeting receptor kinases that mightinitiate the signaling 
pathway (Margolis and Skolnik, 1994; Neshat et al., 2000; Lee and Wang, 2009, Mineo et al., 
2012; Steegmann et al., 2012; Iqbal and Iqbal, 2014; Abbaspour Babaei et al., 2016). 
Clopidogrel inhibits p38 MAP kinase, which would otherwise activate EEAP1, a protein that 
assists in the recruitment of ESCRT complexes to the endosome surface (Ryu and Kim, 2011). 
The role of sulfisoxazole is somewhat controversial. Some reports indicate a significant 
decrease in EVs released by breast cancer cells due to decreased expression of ESCRT genes, 
while other studies have demonstrated the opposite effect (Im et al., 2019; Fonseka et al., 
2021).  
Other non-ESCRT-targeted drugs include Imaprine and GW4869, which inhibit enzymes that 
participate in invagination of the endosome to form the smaller bodies known as intraluminal 
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vesicles, and also facilitate budding when translocated to the cell membrane (Bianco et al., 
2009; Essandoh et al., 2015; Vilette et al., 2015; Deng et al., 2017; Kosgodage et al., 2017; 
Menck et al., 2017).   
Drugs focusing more heavily on EV export include Calpeptin, which targets calpains, a group of 
proteins whose many roles also include cytoskeletal remodeling, one of the processes involved 
in budding, and EV release (Yano et al., 1993). Calpains are activated by ERK, so preventing 
activation of ERK should lead to an indirect prevention of calpain activity, which is accomplished 
by U0126 inhibition of MEK1/2, the signaling molecules upstream of ERK (Li et al., 2010; Jin et 
al., 2022). Calpains require a certain concentration threshold of calcium in order to function, 
thus dimethyl amiloride, an inhibitor of sodium/calcium channel proteins, can also prevent their 
activation and participation in EV release (Savina et al., 2003; Chalmin et al., 2010). Regardless 
of the production pathway, biogenesis requires accessible lipids to modulate the EV structure 
(Skotland et al., 2020). Indomethacin capitalizes on this, by inhibiting lipid transporter proteins, 
removing access to lipids, and subsequently decreasing EV biogenesis (Aung et al., 2011; Koch 
et al., 2016).  
A different approach has been that of targeting proteins involved in cytoskeletal reorganization, 
thus impeding the actin re-organization required for EV release. Among these, ROCK proteins 
are inhibited by Y27632 and Bisindolylmaleimide I (Tramontano et al., 2004; Sapet et al., 2006; 
Abid Hussein et al., 2007; Latham et al., 2013; Kim et al., 2014; Stratton et al., 2015). 
NSC23766 also targets cytoskeletal remodeling, but by inhibiting the activity of Rho small 
GTPase family protein Rac1 (Wang et al., 2017). Cytochalasin D targets the cytoskeleton more 
directly, binding to the edges of actin filaments, blocking polymerization and any subsequent 
participation in budding of the plasma membrane (May et al., 1998; Khan et al., 2011). 
Pantetheine blocks a separate process involved in budding, specifically the translocation of 
phosphatidylserine from the intracellular facing portion of the phospholipid membrane to the 
outer membrane leaflet (Kavian et al., 2015).  
 

6.2. Drugs that interfere with EV uptake  
 
Several of the uptake pathways utilize interactions with EV surface characteristics such as 
surface charge (Fröhlich, 2012; Mulcahy et al., 2014), thus any environmental stimulus that 
disrupts these interactions may influence the specific method of uptake. With the understanding 
that zeta potential represents a measurement of EV surface charge (Yu et al., 2014), 
compounds such as timolol maleate and brinzolamide have demonstrated the ability to 
decrease EV uptake, supposedly by decreasing the negativity of the EV surface charge (Tabak 
et al., 2021).  
Being one of the major uptake pathways, endocytosis presents a viable target for inhibiting the 
uptake of extracellular vesicles. There are several mechanisms by which endocytosis occurs. 
One such mechanism is facilitated by heparan sulfate proteoglycans, whereby the molecule 
acts as a plasma membrane signaling receptor for initiating caveolin-dependent endocytosis 
(Christianson et al., 2013; Christianson and Belting, 2014). Heparin is a mimetic of heparan 
sulfate, which prevents endocytosis and subsequently inhibits EV uptake by competitively 
binding to the ligands on the EV surface (Sarrazin et al., 2011; Meneghetti et al., 2015; Huang 
et al., 2020; Tu et al., 2021). Another necessary component of caveolin- and clathrin-dependent 
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endocytosis is dynamin2, a protein that assists the invaginated region with scission from the cell 
membrane (Ehrlich et al., 2004; Ferguson and De Camilli, 2012; González-Jamett et al., 2013). 
Dynasore exploits this interaction to prevent endocytosis by non-competitively inhibiting the 
enzymatic activity of dynamin 2 and blocking up to 70% of EV uptake (Newton et al., 2006; 
Kirchhausen et al., 2008). Genistein also targets this interaction, as it can not only facilitate actin 
network disruption, but also inhibit membrane recruitment of dynamin (Pelkmans et al., 2002; 
Costa Verdera et al., 2017). Another archetype of endocytosis is mediated by clathrin proteins 
(Kirchhausen, 2000). Recent reports indicate that protein tyrosine phosphatases (PTPs), 
specifically protein of regenerative liver-1, -2, and -3 (PRL-1, -2, -3) participate in the early 
endosome formation, via interaction of their prenylated moiety with the plasma membrane (Zeng 
et al., 2000). It was further demonstrated that a loss of function in endoplasmic reticulum-
localized non-receptor protein-tyrosine phosphatase 1B (PTP1B) led to hyperphosphorylation of 
N-ethylmaleimide-sensitive factor (NSF), which attenuates further vesicle fusion and EV uptake 
via disassembly of the SNARE complex during initial vesicle fusion (Sangwan et al., 2011). 
Novel PTP inhibitors, with potent and effective profile of activity have been proposed as novel 
drug candidates for the treatment of inflammation and lung injury (Lazo et al., 2023). The 
clathrin-mediated endocytosis is further targeted by chlorpromazine, which blocks the 
generation of clathrin-coated pits at the plasma membrane, thus decreasing EV uptake (Wang 
et al., 1993; Escrevente et al., 2011). Another mechanism of EV internalization is through 
phagocytosis (Feng et al., 2010). Wortmannin has proved successful in targeting 
phosphoinositide 3-kinases (PI3Ks), a critical mediator of the phagocytic processes, whose 
inhibition blocks phagosome formation and consequent EV uptake (Stephens et al., 2002; Liu et 
al., 2005; Bastos-Amador et al., 2012; Abliz et al., 2015). Drugs that modulate EV biogenesis 
and uptake are summarized in Table 1. 
 
 
7. Conclusion 

 
Extracellular vesicles are critical and novel mediators of intercellular communication that 
contribute to the maintenance of tissue homeostasis and, at the same time, participate in 
multiple disease pathophysiologies. In ARDS, circulating EVs can evoke endothelial 
hyperpermeability, activation of the inflammatory cascade, and priming of the immune system, 
thus playing a major role in the signaling responsible for disease development and progression. 
In contrast, EVs of alveolar-epithelial origin seem to exert a protective effect on lung structures 
during disease. Multiple analeptic approaches have been proposed to combat EV pathologic 
signaling by targeting their production or their absorbance by recipient cells. Inhibition of EV 
uptake and/or release may represent an innovative strategy to target ARDS. Further 
investigation of EV production may also lead to the development of detailed interventions able 
to modulate the EV cargo, and thus modulating their dangerous effects without modifying their 
concentration and release. Ancillary research is necessary to produce cell-specific, selective, 
efficacious and safe therapeutic drug candidates.  
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EVs: Extracellular Vesicles; 
PaO2: partial pressure of oxygen; 
FiO2:  fraction of inspired oxygen; 
SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus-2: 
COVID-19: SARS-CoV-2 related disease; 
CO2: carbon dioxide; 
DAMPS: damage-associated molecular patterns; 
miRNA: microRNA; 
S1PR3: Sphingosine 1-phosphate receptor; 
IL-1β: interleukin 1 beta; 
TNF-α: tumor necrosis factor Alpha; 
ESCRT: endosomal sorting complexes required for transport machinery; 
ROS: reactive oxygen species; 
BAL: Bronchoalveolar lavage; 
EPC: endothelial progenitor cells; 
DNA: Deoxyribonucleic acid; 
SPRED1: Sprouty-related, EVH1 domain-containing protein 1; 
Raf: Rapidly Accelerated Fibrosarcoma; 
ERK: Extracellular signal-regulated kinases; 
ALI: Acute Lung Injury; 
VEGFRβ: Vascular endothelial growth factor receptor beta; 
PAI-1: plasminogen activated inhibitor-1; 
MIP-2: macrophage inducible protein-2; 
ROCK1: Rho associated coiled-coil protein kinase 1; 
Cys: cysteine; 
Wnts: Wingless and Int-1; 
WBC: White blood cells; 
IL-6: interleukin 6; 
TGF-β: Transforming growth factor β 
VCAM-1: Vascular Cell Adhesion protein1; 
LncRNAs: Long non coding RNAs; 
CCL3: chemokine ligand 3; 
IFNγ: Interferon gamma; 
ERAP1: endoplasmic reticulum aminopeptidase 1; 
NK: natural killer cells; 
TF: Tissue factor; 
CD40: Cluster of Differentiation 40; 
HIF-1α: Hypoxia inducible factor 1α; 
MEK: mitogen-activated protein kinase kinase; 
PTPs: protein tyrosine phosphatase; 
PRL-1,2,3: protein of regenerative liver 1,2,3, also known as PTP type IVA; 
PTP1B: protein-tyrosine phosphatase 1B; 
NSF: N-ethylmaleimide-sensitive factor; 
SNARE: SNAp Receptor; ----
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PI3Ks: phosphoinositide 3-kinases; 
RAS: rat Sarcoma virus; 
aSMase: Acid Sphingomyelinases; 
nSMase: Neutral sphingomyelinase; 
NHE: Plasma membrane Na+/H+ exchanger isoforms; 
ABCA3: ATP-binding cassette sub-family A member 3; 
PKC: Protein Kinase C; 
HMGCR: HMG-CoA reductase; 
HSPG: Heparan sulfate proteoglycans; 
AP2: Adaptor Protein 2; 
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Figure legends: 
 
FIGURE 1 
Figure 1. Extracellular vesicle (EV) mediates endothelial permeability in ARDS. (A) Schematic 
representation of the alveolo-capillary structures in health and disease. During ARDS, the endothelial 
monolayer is inflamed, allowing the migration of neutrophils, monocyte-macrophages, and fluid into the 
alveolar spaces, resulting in inflammation, release of cytokines and respiratory dysfunction. (B) Focus on 
the endothelial monolayer at the blood-gas interface. Circulating inflammatory EVs are absorbed by 
endothelial cells and mediate endothelial barrier dysfunction in ARDS.  
 
FIGURE 2 
Figure 2. In ARDS, each cell type produces specific extracellular vesicles (EV). Endothelial cell-derived 
EVs contain inflammatory cytokines, vascular growth factor β, protease activator factor 1 and moesin that 
promote endothelial barrier function and apoptosis; Alveolar cell-derived EVs mediate macrophage 
recruitment and defense against pathogens; Activated neutrophil-derived EVs mediate cell adhesion, 
inflammatory reaction, and immune system activation; Platelet-derived EVs mediate coagulation and 
neutrophil recruitment. 
 
FIGURE 3 
Figure 3. Schematic representation of the main drug-targeted approach to modulate extracellular 
vesicle (EV) signaling. (left) Drugs that modulate EV biogenesis and release; (right) therapeutic 
interventions that modulate EV uptake and absorption (right). 
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TABLE 1 
 

Drugs modulating EVs 
biogenesis 

Targeted Pathway Target  Studies 

Manumycin A ESCRT pathway RAS (Zheng et al., 2012, Datta et al., 
2017) 

Imatinib ESCRT pathway BCR-ABL1 (Margolis & Skolnik, 1994, Neshat et 
al., 2000, Lee & Wang, 2009, Mineo 
et al., 2012, Steegmann et al., 2012, 
Iqbal & Iqbal, 2014, Abbaspour 
Babaei et al., 2016) 

Clopidogrel ESCRT pathway p38 MAPK (Ryu & Kim, 2011) 
Sulfisoxazole* ESCRT pathway ETA (Im et al., 2019, Fonseka et al., 2021) 
Imipramine Non-ESCRT pathway aSMase (Bianco et al., 2009, Deng et al., 

2017, Kosgodage et al., 2017) 
GW4869 Non-ESCRT pathway nSMase (Essandoh et al., 2015, Vilette et al., 

2015, Menck et al., 2017) 
Calpeptin Non-ESCRT pathway Calpain (Yano et al., 1993) 
U0126 Non-ESCRT pathway MEK 1/2 (Li et al., 2010, Jin et al., 2022) 
Dimethyl Amiloride Non-ESCRT pathway NHE 1/2/3, NCX (Savina et al., 2003, Chalmin et al., 

2010) 
Indomethacin Non-ESCRT pathway ABCA3 (Aung et al., 2011, Koch et al., 2016) 
Y27632 Non-ESCRT pathway ROCK 1/2 (Tramontano et al., 2004, Sapet et 

al., 2006, Abid Hussein et al., 2007, 
Latham et al., 2013, Kim et al., 2014) 

Bisindolylmaleimide I Non-ESCRT pathway PKC (Stratton et al., 2015) 
NSC23766 Non-ESCRT pathway Rac1 (Wang et al., 2017) 
Cytochalasin D Non-ESCRT pathway Actin (May et al., 1998, Khan et al., 2011) 
Pantetheine Non-ESCRT pathway ACC, HMGCR (Kavian et al., 2015) 
Drugs modulating EVs 
uptake 

   

Timolol Maleate General Uptake βR 1/2 (Fröhlich, 2012, Mulcahy et al., 2014, 
Yu et al., 2014, Tabak et al., 2021) 

Brinzolamide General Uptake CA-II (Fröhlich, 2012, Mulcahy et al., 2014, 
Yu et al., 2014, Tabak et al., 2021) 

Heparin Caveolin-dependent 
Endocytosis 

HSPG (Sarrazin et al., 2011, Meneghetti et 
al., 2015, Huang et al., 2020, Tu et 
al., 2021) 

Dynasore Caveolin-dependent 
Endocytosis 

Dynamin-2 (Newton et al., 2006, Kirchhausen et 
al., 2008) 

Genistein Caveolin-dependent 
Endocytosis 

Tyrosine Kinase (Pelkmans et al., 2002, Costa 
Verdera et al., 2017) 
 

Chlorpromazine Clathrin-mediated 
Endocytosis 

AP2 (Wang et al., 1993, Escrevente et al., 
2011) 

Wortmannin Phagocytosis PI3K (Stephens et al., 2002, Liu et al., 
2005, Bastos-Amador et al., 2012, 
Abliz et al., 2015) 

 Table1. Drugs that modulate EV signaling. 
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