8 research outputs found

    A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome.

    Get PDF
    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database

    ExoMol line lists - XLIV. IR and UV line list for silicon monoxide (SiO)

    Get PDF
    A new silicon monoxide (28Si16O) line list covering infrared, visible and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1Π and E 1Σ+ electronic states. Strong perturbations to the A 1Π band system are accurately modelled through the treatment of 6 dark electronic states: C 1Σ−, D 1Δ, a 3Σ+, b 3Π, e 3Σ− and d 3Δ. Along with the X 1Σ+ ground state, these 9 electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin-orbit (SO), electronic angular momentum (EAM) and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction (MRCI) level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X and A–X electronic systems through the MARVEL procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS database
    corecore