1,524 research outputs found

    Mercury in the human adrenal medulla could contribute to increased plasma noradrenaline in aging

    Full text link
    Plasma noradrenaline levels increase with aging, and this could contribute to the sympathetic overactivity that is associated with essential hypertension and the metabolic syndrome. The underlying cause of this rise in noradrenaline is unknown, but a clue may be that mercury increases noradrenaline output from the adrenal medulla of experimental animals. We therefore determined the proportion of people from 2 to 104 years of age who had mercury in their adrenal medulla. Mercury was detected in paraffin sections of autopsied adrenal glands using two methods of elemental bioimaging, autometallography and laser ablation-inductively coupled plasma-mass spectrometry. Mercury first appeared in cells of the adrenal medulla in the 21ā€“40 years group, where it was present in 52% of samples, and increased progressively in frequency in older age groups, until it was detected in 90% of samples from people aged over 80 years. In conclusion, the proportion of people having mercury in their adrenal medulla increases with aging. Mercury could alter the metabolism of catecholamines in the adrenal medulla that leads to the raised levels of plasma noradrenaline in aging. This retrospective autopsy study was not able to provide a definitive link between adrenal mercury, noradrenaline levels and hypertension, but future functional human and experimental studies could provide further evidence for these associations

    Elemental imaging shows mercury in cells of the human lateral and medial geniculate nuclei.

    Full text link
    OBJECTIVE:Interference with the transmission of sensory signals along visual and auditory pathways has been implicated in the pathogenesis of hallucinations. The relay centres for vision (the lateral geniculate nucleus) and hearing (the medial geniculate nucleus) appear to be susceptible to the uptake of circulating mercury. We therefore investigated the distribution of mercury in cells of both these geniculate nuclei. MATERIALS AND METHODS:Paraffin-embedded tissue sections containing the lateral geniculate nucleus were obtained from 50 adults (age range 20-104 years) who at autopsy had a variety of clinicopathological conditions, including neurological and psychiatric disorders. The medial geniculate nucleus was present in seven sections. Sections were stained for mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry was used to confirm the presence of mercury. RESULTS:Ten people had mercury in cells of the lateral geniculate nucleus, and in the medial geniculate nucleus of three of these. Medical diagnoses in these individuals were: none (3), Parkinson disease (3), and one each of depression, bipolar disorder, multiple sclerosis, and mercury self-injection. Mercury was distributed in different groups of geniculate capillary endothelial cells, neurons, oligodendrocytes, and astrocytes. Mass spectrometry confirmed the presence of mercury. CONCLUSION:Mercury is present in different combinations of cell types in the lateral and medial geniculate nuclei in a proportion of people from varied backgrounds. This raises the possibility that mercury-induced impairment of the function of the geniculate nuclei could play a part in the genesis of visual and auditory hallucinations. Although these findings do not provide a direct link between mercury in geniculate cells and hallucinations, they suggest that further investigations into the possibility of toxicant-induced hallucinations are warranted

    The effect of deformation on dispersion hardened alloys Final report

    Get PDF
    High temperature tensile properties of TD nickel after mechanical working and recrystallization treatment

    The distribution of toxic metals in the human retina and optic nerve head: Implications for age-related macular degeneration.

    Full text link
    OBJECTIVE:Toxic metals are suspected to play a role in the pathogenesis of age-related macular degeneration. However, difficulties in detecting the presence of multiple toxic metals within the intact human retina, and in separating primary metal toxicity from the secondary uptake of metals in damaged tissue, have hindered progress in this field. We therefore looked for the presence of several toxic metals in the posterior segment of normal adult eyes using elemental bioimaging. METHODS:Paraffin sections of the posterior segment of the eye from seven tissue donors (age range 54-74 years) to an eye bank were examined for toxic metals in situ using laser ablation-inductively coupled plasma-mass spectrometry, a technique that detects multiple elements in tissues, as well as the histochemical technique of autometallography that demonstrates inorganic mercury, silver, and bismuth. No donor had a visual impairment, and no significant retinal abnormalities were seen on post mortem fundoscopy and histology. RESULTS:Metals found by laser ablation-inductively coupled plasma-mass spectrometry in the retinal pigment epithelium and choriocapillaris were lead (n = 7), nickel (n = 7), iron (n = 7), cadmium (n = 6), mercury (n = 6), bismuth (n = 5), aluminium (n = 3), and silver (n = 1). In the neural retina, mercury was present in six samples, and iron in one. Metals detected in the optic nerve head were iron (N = 7), mercury (N = 7), nickel (N = 4), and aluminium (N = 1). No gold or chromium was seen. Autometallography demonstrated probable inorganic mercury in the retinal pigment epithelium of one donor. CONCLUSION:Several toxic metals are taken up by the human retina and optic nerve head. Injury to the retinal pigment epithelium from toxic metals could damage the neuroprotective functions of the retinal pigment epithelium and allow toxic metals to enter the outer neural retina. These findings support the hypothesis that accumulations of toxic metals in the retina could contribute to the pathogenesis of age-related macular degeneration

    Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway

    Get PDF
    Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. These residues are recognized by E3 ubiquitin ligases called N-recognins. Ubr1 is the N-recognin of the yeast Saccharomyces cerevisiae. Extracellular amino acids or short peptides up-regulate the peptide transporter gene PTR2, thereby increasing the capacity of a cell to import peptides. Cup9 is a transcriptional repressor that down-regulates PTR2. The induction of PTR2 by peptides or amino acids involves accelerated degradation of Cup9 by the N-end rule pathway. We report here that the Ubr1 N-recognin, which conditionally targets Cup9 for degradation, is phosphorylated in vivo at multiple sites, including Ser300 and Tyr277. We also show that the type-I casein kinases Yck1 and Yck2 phosphorylate Ubr1 on Ser300, and thereby make possible (ā€œprimeā€) the subsequent (presumably sequential) phosphorylations of Ubr1 on Ser296, Ser292, Thr288, and Tyr277 by Mck1, a kinase of the glycogen synthase kinase 3 (Gsk3) family. Phosphorylation of Ubr1 on Tyr277 by Mck1 is a previously undescribed example of a cascade-based tyrosine phosphorylation by a Gsk3-type kinase outside of autophosphorylation. We show that the Yck1/Yck2-mediated phosphorylation of Ubr1 on Ser300 plays a major role in the control of peptide import by the N-end rule pathway. In contrast to phosphorylation on Ser300, the subsequent (primed) phosphorylations, including the one on Tyr277, have at most minor effects on the known properties of Ubr1, including regulation of peptide import. Thus, a biological role of the rest of Ubr1 phosphorylation cascade remains to be identified

    The Effects of Antimicrobial Mouthwashes on Systemic Disease: What Is the Evidence?

    Get PDF
    The potential association between antimicrobial mouthwash use and systemic health has gained attention in recent years with reports highlighting how some common systemic conditions are influenced by the use of different types of mouthwashes. In this context, links between mouthwash use and cardiovascular disease, diabetes mellitus, oral cancer, Alzheimer's disease, and preeclampsia have been proposed, albeit with limited levels of evidence. Chlorhexidine mouthwash in particular has been the most widely studied agent while available data on other types of over-the-counter mouthwashes are generally scarce. Furthermore, there is currently no evidence-based recommendations on the appropriate use of mouthwashes during pregnancy. This article will present the current evidence on the association between mouthwash use and the aforementioned conditions with emphasis on the mechanisms that may underlie such an association

    LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues

    Full text link
    Ā© 2018 Elsevier GmbH A novel analytical method to detect the retention of gadolinium from contrast agents for magnetic resonance imaging (MRI) in tissue samples of patients is presented. It is based on laser ablation - inductively coupled plasma - triple quadrupole - mass spectrometry (LA-ICP-MS/MS). Both Gd and P were monitored with a mass shift of +16, corresponding to mono-oxygenated species, as well as Zn, Ca, and Fe on-mass. This method resulted in a significantly reduced background and improved limits of detection not only for phosphorus, but also for gadolinium. These improvements were essential to perform elemental bioimaging with improved resolution of 5 Ī¼m x 5 Ī¼m, allowing the detection of small Gd deposits in fibrotic skin and brain tumour tissue with diameters of approximately 50 Ī¼m. Detailed analyses of these regions revealed that most Gd was accompanied with P and Ca, indicating co-precipitation

    What Are the Real Procedural Costs of Bariatric Surgery? A Systematic Literature Review of Published Cost Analyses

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordThis review aims to evaluate the current literature on the procedural costs of bariatric surgery for the treatment of severe obesity. Using a published framework for the conduct of micro-costing studies for surgical interventions, existing cost estimates from the literature are assessed for their accuracy, reliability and comprehensiveness based on their consideration of seven ā€˜importantā€™ cost components. MEDLINE, PubMed, key journals and reference lists of included studies were searched up to January 2017. Eligible studies had to report per-case, total procedural costs for any type of bariatric surgery broken down into two or more individual cost components. A total of 998 citations were screened, of which 13 studies were included for analysis. Included studies were mainly conducted from a US hospital perspective, assessed either gastric bypass or adjustable gastric banding procedures and considered a range of different cost components. The mean total procedural costs for all included studies was US14,389(range,US14,389 (range, US7423 to US$33,541). No study considered all of the recommended ā€˜importantā€™ cost components and estimation methods were poorly reported. The accuracy, reliability and comprehensiveness of the existing cost estimates are, therefore, questionable. There is a need for a comparative cost analysis of the different approaches to bariatric surgery, with the most appropriate costing approach identified to be micro-costing methods. Such an analysis will not only be useful in estimating the relative cost-effectiveness of different surgeries but will also ensure appropriate reimbursement and budgeting by healthcare payers to ensure barriers to access this effective treatment by severely obese patients are minimised.National Institute for Health Research (NIHR

    Glycogen synthase kinase 3, circadian rhythms, and bipolar disorder: a molecular link in the therapeutic action of lithium

    Get PDF
    BACKGROUND: Bipolar disorder (BPD) is a widespread condition characterized by recurring states of mania and depression. Lithium, a direct inhibitor of glycogen synthase kinase 3 (GSK3) activity, and a mainstay in BPD therapeutics, has been proposed to target GSK3 as a mechanism of mood stabilization. In addition to mood imbalances, patients with BPD often suffer from circadian disturbances. GSK3, an essential kinase with widespread roles in development, cell survival, and metabolism has been demonstrated to be an essential component of the Drosophila circadian clock. We sought to investigate the role of GSK3 in the mammalian clock mechanism, as a possible mediator of lithium's therapeutic effects. METHODS: GSK3 activity was decreased in mouse embryonic fibroblasts (MEFs) genetically and pharmacologically, and changes in the cyclical expression of core clock genes ā€“ mPer2 in particular ā€“ were examined. RESULTS: We demonstrate that genetic depletion of GSK3 in synchronized oscillating MEFs results in a significant delay in the periodicity of the endogenous clock mechanism, particularly in the cycling period of mPer2. Furthermore, we demonstrate that pharmacological inhibition of GSK3 activity by kenpaullone, a known antagonist of GSK3 activity, as well as by lithium, a direct inhibitor of GSK3 and the most common treatment for BPD, induces a phase delay in mPer2 transcription that resembles the effect observed with GSK3 knockdown. CONCLUSION: These results confirm GSK3 as a plausible target of lithium action in BPD therapeutics, and suggest the circadian clock mechanism as a significant modulator of lithium's clinical benefits

    Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers

    Full text link
    Internal exposure from naturally occurring radionuclides (including the inhaled long-lived actinides 232Th and 238U) is a component of the ubiquitous background radiation dose (National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States; NCRP Report No. 160; NCRP: Bethesda, MD, 2009). It is of interest to compare the concentration distribution of these natural ?-emitters in the lungs and respiratory lymph nodes with those resulting from occupational exposure, including exposure to anthropogenic plutonium and depleted and enriched uranium. This study examines the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantifying and visualizing the mass distribution of uranium and thorium isotopes from both occupational and natural background exposure in human respiratory tissues and, for the first time, extends this application to the direct imaging of plutonium isotopes. Sections of lymphatic and lung tissues taken from deceased former nuclear workers with a known history of occupational exposure to specific actinide elements (uranium, plutonium, or americium) were analyzed by LA-ICPMS. Using a previously developed LA-ICPMS protocol for elemental bio-imaging of trace elements in human tissue and a new software tool, we generated images of thorium (232Th), uranium (235U and 238U), and plutonium (239Pu and 240Pu) mass distributions in sections of tissue. We used a laboratory-produced matrix-matched standard to quantify the 232Th, 235U, and 238U concentrations. The plutonium isotopes 239Pu and 240Pu were detected by LA-ICPMS in 65 ?m diameter localized regions of both a paratracheal lymph node and a sample of lung tissue from a person who was occupationally exposed to refractory plutonium (plutonium dioxide). The average (overall) 239Pu concentration in the lymph node was 39.2 ng/g, measured by high purity germanium (HPGe) ?-spectrometry (Lynch, T. P.; Tolmachev, S. Y.; James, A. C. Radiat. Prot. Dosim. 2009, 134, 94?101). Localized mass concentrations of thorium (232Th) and uranium (238U) in lymph node tissue from a person not occupationally exposed to these elements (chronic natural background inhalation exposure) ranged up to 400 and 375 ng/g, respectively. In lung samples of occupationally nonexposed to thorium and uranium workers, 232Th and 238U concentrations ranged up to 200 and 170 ng/g, respectively. In a person occupationally exposed to air-oxidized uranium metal (Adley, F. E.; Gill, W. E.; Scott, R. H. Study of atmospheric contaminiation in the melt plant buiding. HW-23352(Rev.); United States Atomic Energy Commission: Oakridge, TN, 1952, p 1?97), the maximum 235U and 238U isotopic mass concentrations in a lymph node, measured at higher resolution (with a 30 ?m laser spot diameter), were 70 and 8500 ng/g, respectively. The ratio of these simultaneously measured mass concentrations signifies natural uranium. The current technique was not sufficiently sensitive, even with a 65 ?m laser spot diameter, to detect 241Am (at an overall tissue concentration of 0.024 ng/g, i.e., 3 Bq/g). Ā© 2010 American Chemical Society
    • ā€¦
    corecore