6 research outputs found

    PC programs for the prediction of the linear stability behavior of liquid propellant propulsion systems and application to current MSFC rocket engine test programs, volume 1

    Get PDF
    Research on propulsion stability (chugging and acoustic modes), and propellant valve control was investigated. As part of the activation of the new liquid propulsion test facilities, it is necessary to analyze total propulsion system stability. To accomplish this, several codes were built to run on desktop 386 machines. These codes enable one to analyze the stability question associated with the propellant feed systems. In addition, further work was adapted to this computing environment and furnished along with other codes. This latter inclusion furnishes those interested in high frequency oscillatory combustion behavior (that does not couple to the feed system) a set of codes for study of proposed liquid rocket engines

    High temperature superconductor materials and applications

    Get PDF
    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated

    Development and use of a linear momentum exchange device

    Get PDF
    In 1981 the Marshall Space Flight Center (MSFC) began establishing an inhouse facility for testing control concepts to be applied to Large Space Structures (LSS). The original concept called for a long flexible beam suspended from the ceiling by a low friction support system. The lower end of the beam was to be mounted to the Advanced Gimbal System (AGS). Analysis and system engineering soon showed that a more tenable design would be where the whole system was inverted, i.e., the AGS hung from the ceiling with the beam hanging down from it. While this configuration, augmented by a base excitation table (RET) was being built, an ASTROMAST obtained from the Jet Propulsion Laboratory was extended, analyzed and tested. From that basic configuration was evolved the cruciform, VCOSS and ACES configurations as shown. The addition of the cruciform added low frequency nested modes and the additional instrument package at the tip contains gyros to monitor tip motion

    Propulsion stability codes for liquid propellant propulsion systems developed for use on a PC computer

    Get PDF
    Research into component modeling and system synthesis leading to the analysis of the major types of propulsion system instabilities and the characterization of various components characteristics are presented. Last year, several programs designed to run on a PC were developed for Marshall Space Flight Center. These codes covered the low, intermediate, and high frequency modes of oscillation of a liquid rocket propulsion system. No graphics were built into these programs and only simple piping layouts were supported. This year's effort was to add run time graphics to the low and intermediate frequency codes, allow new types of piping elements (accumulators, pumps, and split pipes) in the low frequency code, and develop a new code for the PC to generate Nyquist plots

    Advanced electric motor technology flux mapping

    Get PDF
    Design of electric motors which fulfill the needs of Thrust Vector Control (TVC) actuators used in large rocket propelled launch vehicles is covered. To accomplish this end the methodology of design is laid out in some detail. In addition a point design of a motor to fulfill the requirements of a certain actuator specified by MSFC is accomplished and reported upon. In the course of this design great stress has been placed on ridding the actuator of internally generated heat. To conduct the heat out of the motor use is made of the unique properties of the in house MSFC designed driving electronics. This property is that as along as they are operated in a quasi-linear mode the electronics nullify the effects of armature inductance as far as the phase of the armature current versus the rotor position is concerned. Actually the additional inductance due to the extended end turns in this design is of benefit because in the shorted armature failure mode the armature current in the fault (caused by the rotor flux sweeping past the armature) is diminished at a given rotor speed when compared to a more conventional motor with lower inductance. The magnetic circuit is analyzed using electromagnetic finite element methods

    High temperature superconductor materials and applications

    Get PDF
    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report
    corecore