4,849 research outputs found

    Evaluation and Implications of Greenhouse Gas and Energy Targert Management System in Korea

    Get PDF
    The Korean government has been implementing the Greenhouse Gas and Energy Target Management System towards big emitters and energy glutton entities, based on the Framework Act on Low Carbon, Green Growth since 2010. The Target Management System is a tool for smoother transition to the Emissions Trading Scheme which is set to start in 2015, and offers the opportunity for covered entities to reduce greenhouse gases. The GHG emission and energy consumption levels of controlled entities was reported to the government for the first time in late March of 2013, for the first year that the policy was implemented in 2012. This study focuses on the controlled entities of the power and industry sector, which account for 97% of all covered entities, by analyzing their submitted GHG emissions and energy consumption records and evaluating implementation performance as well as suggesting institutional improvements and complementary measures. Based on analysis of performance results, GHG emissions were effectively reduced by an excess of 7.6%, and energy consumption by an excess of 4.3%, showing the effectiveness of the Target Management System in reducing GHG emissions and energy consumption. Among sub-sectors, the machinery industry is shown to have the highest target accomplishment rate, whereas the elecrticity sub-sector could not meet reduction goals as a result of frequent shutdown of nuclear power plants in 2012. Analysis of performance result according to the big company group and the small and medium company group shows that the big company group shows an average reduction ratio of GHG and energy usage, respectively, of 0.1168 and 0.0344. These numbers were satisfactory compared to the reduction ratios of small and medium companies of -0.0910 and -0.1627, showing that in order to successfully implement the Target Management System, the government must offer its financial and technical support to the small and medium companies. Keywords: Greenhoese Gas, Energy, Target Management System, Achievement Ratio, GEAR inde

    Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer\u27s disease

    Get PDF
    A promising new therapeutic target for the treatment of Alzheimer\u27s disease (AD) is the circadian system. Although patients with AD are known to have abnormal circadian rhythms and suffer sleep disturbances, the role of the molecular clock in regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse microglia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary A

    An Electromagnetic Steering System for Magnetic Nanoparticle Drug Delivery

    Get PDF
    Targeted delivery of pharmaceutical agents to the brain using magnetic nanoparticles (MNPs) is an efficient technique to transport molecules to disease locations. MNPs can cross the blood–brain barrier (BBB) and can be concentrated at a specific location in the brain using non-invasive electromagnetic forces. The proposed EMA consists of two coil-core system. The cores are added in the center of each coil to concentrate the flux in the region of interest. The EMA can enhance the gradient field 10 times compared to only coil system and generate the maximum magnetic field of 160 mT and 5.6 T/m. A 12-kW direct-current power supply was used to generate sufficient magnetic forces on the MNPs by regulating the input currents of the coils. Effective guidance of MNPs is demonstrated via simulations and experiments using 800-nm-diameter MNPs in a Y-shaped channel. The developed EMA system has high potentials to increase BBB crossing of MNPs for efficient drug targeting to brain region

    Removal of Total Dissolved Solids from Reverse Osmosis Concentrates from a Municipal Wastewater Reclamation Plant by Aerobic Granular Sludge

    Get PDF
    Reverse osmosis (RO) has been widely utilized in water reclamation plants and produces a concentrated brine (or reject) stream as a by-product. RO concentrates (ROC) contain vast quantities of salts and dissolved organic matter, such as biomass and humic-like substances, which hinder biological wastewater treatment (such as biological nitrogen removal). In this study, we cultivated granular sludge in an aerobic sequencing batch reactor to treat municipal wastewater with an organic loading rate of 2.1–4.3 kgCOD/m3 day at room temperature (25 °C), and remove total dissolved solids (TDS) from ROC by biosorption, with aerobic granular sludge as a novel biosorbent. The results of the kinetic experiments demonstrated that TDS removal by aerobic granular sludge was more rapid than that by other coagulants and adsorbents (i.e., calcium hydroxide, polyaluminum chloride, activated sludge, powdered activated carbon, granular activated carbon, and zeolite) under optimal treatment conditions. The biosorption of TDS on the aerobic granular sludge was well-modeled by the Lagergren first-order model, with a maximum biosorption capacity of 1698 mg/g. Thus, aerobic granular sludge could be effective as a regenerable biosorbent for removing the TDS in ROC from municipal wastewater

    Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    Full text link
    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for {\alpha} particles under the present conditions is found to be ~ 97.3 %

    Functionalized Magnetic Force Enhances Magnetic Nanoparticle Guidance: From Simulation to Crossing of the Blood-Brain Barrier in vivo

    Get PDF
    In recent studies, we introduced the concept of functionalized magnetic force as a method to prevent nanoparticles from sticking to vessel walls caused by extensive simulation and in vitro experiments involving a Y-shaped channel. In this study, we further investigated the effectiveness of the functionalized magnetic force with a realistic 3D vessel through simulations. For the simulations, we considered a more realistic continuous injection of particles with different magnetic forces and frequencies. Based on the results from our simulation studies, we performed in vivo mice experiments to evaluate the effectiveness of using a functionalized magnetic force to aid magnetic nanoparticles (MNPs) in crossing the blood-brain barrier (BBB). To implement the functionalized magnetic force, we developed an electromagnetic actuator regulated by a programmable direct current (DC) power supply. Our results indicate that a functionalized magnetic field can effectively prevent MNPs from sticking, and also guide them across the BBB. We used 770-nm fluorescent carboxyl MNPs in this study. Following intravenous administration of MNPs into mice, we applied an external magnetic field (EMF) to mediate transport of the MNPs across the BBB and into the brain. Furthermore, we evaluated the differential effects of functionalized magnetic fields (0.25, 0.5, and 1 Hz) and constant magnetic fields on the transport of MNPs across the BBB. Our results showed that a functionalized magnetic field is more effective than a constant magnetic field in the transport and uptake of MNPs across the BBB in mice. Specifically, applying a functionalized magnetic field with a 3 A current and 0.5 Hz frequency mediated the greatest transport and uptake of MNPs across the BBB in mic

    Functionalized Magnetic Force Enhances Magnetic Nanoparticle Guidance: From Simulation to Crossing of the Blood-Brain Barrier in vivo

    Get PDF
    In recent studies, we introduced the concept of functionalized magnetic force as a method to prevent nanoparticles from sticking to vessel walls caused by extensive simulation and in vitro experiments involving a Y-shaped channel. In this study, we further investigated the effectiveness of the functionalized magnetic force with a realistic 3D vessel through simulations. For the simulations, we considered a more realistic continuous injection of particles with different magnetic forces and frequencies. Based on the results from our simulation studies, we performed in vivo mice experiments to evaluate the effectiveness of using a functionalized magnetic force to aid magnetic nanoparticles (MNPs) in crossing the blood-brain barrier (BBB). To implement the functionalized magnetic force, we developed an electromagnetic actuator regulated by a programmable direct current (DC) power supply. Our results indicate that a functionalized magnetic field can effectively prevent MNPs from sticking, and also guide them across the BBB. We used 770-nm fluorescent carboxyl MNPs in this study. Following intravenous administration of MNPs into mice, we applied an external magnetic field (EMF) to mediate transport of the MNPs across the BBB and into the brain. Furthermore, we evaluated the differential effects of functionalized magnetic fields (0.25, 0.5, and 1 Hz) and constant magnetic fields on the transport of MNPs across the BBB. Our results showed that a functionalized magnetic field is more effective than a constant magnetic field in the transport and uptake of MNPs across the BBB in mice. Specifically, applying a functionalized magnetic field with a 3 A current and 0.5 Hz frequency mediated the greatest transport and uptake of MNPs across the BBB in mic

    Characteristics of high efficiency current charging system for HTS magnet with solar energy

    Get PDF
    AbstractIn terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program
    corecore