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1  | INTRODUC TION

Circadian rhythms such as the sleep–wake cycle are internal rhythms 
that exist on a 24-hr period. These rhythms are generated by the 
suprachiasmatic nuclei (SCN) in the hypothalamus to integrate envi-
ronmental cues and modulate diverse biological processes (Mohawk 

& Takahashi, 2011). Importantly, these rhythms can be disrupted by 
aging or environmental/genetic changes, leading to abnormal sleep 
patterns and other physiological and transcriptional disturbances. 
Circadian rhythm disruption is a symptom of numerous neurolog-
ical and psychiatric diseases, including Alzheimer's disease (AD) 
(Coogan et al., 2013; Musiek & Holtzman, 2016). AD is a well-known 
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Abstract
A promising new therapeutic target for the treatment of Alzheimer's disease (AD) 
is the circadian system. Although patients with AD are known to have abnormal 
circadian rhythms and suffer sleep disturbances, the role of the molecular clock in 
regulating amyloid-beta (Aβ) pathology is still poorly understood. Here, we explored 
how the circadian repressors REV-ERBα and β affected Aβ clearance in mouse micro-
glia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels 
of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary Aβ1-

42 (fAβ1-42) than at CT12. BMAL1 directly drives transcription of REV-ERB proteins, 
which are implicated in microglial activation. Interestingly, pharmacological inhibi-
tion of REV-ERBs with the small molecule antagonist SR8278 or genetic knockdown 
of REV-ERBs-accelerated microglial uptake of fAβ1-42 and increased transcription of 
BMAL1. SR8278 also promoted microglia polarization toward a phagocytic M2-like 
phenotype with increased P2Y12 receptor expression. Finally, constitutive deletion 
of Rev-erbα in the 5XFAD model of AD decreased amyloid plaque number and size 
and prevented plaque-associated increases in disease-associated microglia markers 
including TREM2, CD45, and Clec7a. Altogether, our work suggests a novel strategy 
for controlling Aβ clearance and neuroinflammation by targeting REV-ERBs and pro-
vides new insights into the role of REV-ERBs in AD.
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neurodegenerative disorder that is accompanied by the accumulation 
of amyloid-beta (Aβ) plaques and neurofibrillary tangles in the brain, 
cognitive impairment, and memory loss (Eriksen & Janus, 2007). The 
molecular changes associated with AD can be exacerbated by circa-
dian irregularities (Musiek, Xiong, & Holtzman, 2015; Saeed & Abbott, 
2017). Indeed, recent studies have revealed that circadian rhythms di-
rectly affect Aβ dynamics and pathology (Kress et al., 2018; Schmitt, 
Grimm, & Eckert, 2017). Despite evidence for the role of the circadian 
system in Aβ metabolism, the underlying molecular mechanisms for its 
involvement in AD remain largely unknown.

Components of the cellular circadian clock system are expressed 
in virtually all cells in the body. The core components of this system, 
Bmal1 and Clock, heterodimerize and bind to specific cis-regulatory 
enhancer sequences known as the E-boxes. These proteins drive 
the transcription of several clock-related genes including Period 
(Per1/2/3), Cryptochrome (Cry1/2), REV-ERB proteins (Nr1d1/Nr1d2 
encode REV-ERBα/REV-ERBβ), and retinoic acid receptor-related or-
phan receptors (e.g., Rora). Of these, REV-ERBα and β transcriptionally 
repress Bmal1 by binding to the RORE cis-element in its promoter re-
gion (Herzog, Hermanstyne, Smyllie, & Hastings, 2017) and connect 
the circadian system to macrophage-driven inflammation (Gibbs et 
al., 2012; Griffin et al., 2019; Pariollaud et al., 2018). Rev-Erbα/β are 
also nuclear receptors which function as transcriptional repressors and 
exert a variety of biological functions (Everett & Lazar, 2014; Lam et 
al., 2013; Woldt et al., 2013). Recent studies suggest that modulating 
REV-ERBα activity can be a potent therapeutic target for neurodegen-
erative disease such as AD via modulating the glia activity and neu-
roinflammation response (Griffin et al., 2019; Roby et al., 2019).

The initial responders to Aβ accumulation in the brain are innate im-
mune cells known as microglia. Microglia rhythmically express circadian 
clock genes that can regulate function, including phagocytosis, inflam-
matory responses, and autophagy (Fonken et al., 2015; Ma, Li, Molusky, 
& Lin, 2012). This regulation may occur in part by mediating pro-in-
flammatory chemokine expression (Lam et al., 2013; Sato et al., 2014). 
Microglia are highly sensitive to environmental cues and can immedi-
ately transform their morphology into distinctive phenotypes, including 
resting, classically activated (M1), and alternatively activated (M2) mi-
croglia (Ma, Wang, Wang, & Yang, 2017; Zhou et al., 2017). M1 polar-
ized microglia are generally associated with pro-inflammatory cytokine 
production, while M2 polarization is associated with phagocytosis and 
neural repair (Cherry, Olschowka, & O'Banion, 2014; Hu et al., 2015).

Microglial activation is also mediated by several purinoceptors 
(Koizumi, Ohsawa, Inoue, & Kohsaka, 2013). Recently, the puriner-
gic receptor P2Y12R, a Gi/o-coupled ATP receptor, was proposed 
as a specific marker for rodent microglia, particularly for the M2 
phenotype (Butovsky et al., 2014; Moore et al., 2015; Zhu et al., 
2017). Moreover, P2Y12R is considered to be a primary receptor 
that acutely induces microglial chemotaxis toward injury sites or 
Aβ plaques (Thériault, ElAli, & Rivest, 2015). P2Y12R is also impli-
cated in synaptic pruning via modulating microglial phagocytosis. 
Recent work shows that sleep deprivation disrupted the process of 
synapse elimination and complement signaling with reduced expres-
sion of P2Y12R in adolescent but not in adult (Tuan & Lee., 2019). 

Interestingly, transcription of P2Y12R in microglia depends on Bmal1 
and circadian-driven expression of P2Y12R controls diurnal morpho-
logical changes in cortical microglia (Hayashi, 2013).

We hypothesized that dysregulated clock machinery in microglia 
might influence microglial behavior in the context of Aβ clearance. In 
this study, we show a relationship between microglial circadian clock 
oscillation and Aβ uptake, elucidate the effects of circadian repres-
sors REV-ERBα/β on Aβ clearance via increased microglial phago-
cytic activity, and demonstrate that REV-ERBα deletion reduces 
amyloid plaque accumulation in 5XFAD mice. Our findings suggest 
that REV-ERBs are important regulators of Aβ pathology and sug-
gest that they may be a therapeutic target to delay AD progression.

2  | RESULTS

2.1 | Diurnal expression of circadian genes in vivo in 
microglia and macrophages

To investigate whether circadian gene expression was disrupted in a 
mouse model of AD, we measured the level of BMAL1, a core clock 
gene, in 6.5-month WT and 5XFAD mouse brain by Western blot. 
BMAL1 was severely attenuated in 5XFAD cortex compared with WT 
(Figure 1a). In addition, Period1 (Per1) and Period2 (Per2) were signifi-
cantly dampened in 5XFAD cortex as well as in the hippocampus at 
the transcription levels (Figure 1b). Next, we initially confirmed that 
myeloid lineage cells possess molecular clock machinery in vivo prior 
to investigating the effect of circadian clock genes on microglial activ-
ity in AD. To test this, we isolated murine peritoneal macrophages at 
Circadian Time (CT) 6, 12, 18, 24, and 30. This revealed that, in peri-
toneal macrophages, the expression of several key clock components 
(Bmal1, Clock, Cry1, Cry2, Per1, Per2, Rev-erbα, and RORα) dynami-
cally oscillated in a time-dependent manner (Figure 1c), in keeping with 
previous reports (Keller et al., 2009). In particular, the expression of 
Bmal1, which encodes a core clock protein, was lowest at CT12 and 
peaked at around CT24. To more directly investigate the diurnal expres-
sion of Bmal1 in microglia, we performed double immunohistochemical 
staining for the Bmal1 and microglial marker, Iba1 at CT12 and CT24 in 
mouse brain sections that included striatum. Similar to previous in vivo 
data (Figure 1c), Bmal1 expression was higher at CT24 than at CT12 
in Iba1-positive cells and dramatically decreased in 5XFAD mice, es-
pecially at ZT24 (Figure S1). Interestingly, the daily pattern of BMAL1 
expression in microglia entirely reversed in the brain of 5XFAD mice 
compared to WT mice between ZT12 and ZT24 (Figure S1).

2.2 | Regulation of Aβ uptake and clearance by 
clock proteins in BV-2 microglia

We then examined the expression of circadian genes in vitro using 
immortalized BV-2 mouse microglial cells. BV-2 cells were synchro-
nized with 50% horse serum (HS) for 2 hr. Interestingly, synchronized 
BV-2 cells expressed Bmal1 in a biphasic manner that is not clearly 
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circadian (Figure 2a). However, in order to test the effects of clock 
gene expression levels on Aβ uptake, we defined CT4 and CT12 as 
the peak and nadir times of Bmal1 expression, respectively. To explore 
how the daily rhythms of gene expression affected microglial uptake 
of fAβ1–42, we treated synchronized BV-2 cells with fAβ1–42 (1 µM) at 
CT4 and CT12 and then analyzed the amount of fAβ1–42 in cell lysates. 
In synchronized BV-2 cells, fAβ1–42 (1  µM) uptake was highest 2  hr 
after treatment (Figure 2b). Interestingly, we observed that microglia 
engulfed more fAβ1–42 at CT4 than at CT12 (Figure 2c,d). Using immu-
nocytochemistry, we confirmed that more FITC-Aβ1–42 (100 nM) was 

taken up by microglia at CT4 (Figure 2e). Thus, Aβ uptake by BV-2 cells 
varies with time of day in parallel with Bmal1 expression.

We then tested whether the pharmacological manipulation of the 
core circadian clock could alter fAβ1-42 uptake. SR8278 is known to 
inhibit REV-ERBα/β activity, thereby reducing repressive effects on 
Bmal1 and inducing Bmal1 expression (Kojetin, Wang, Kamenecka, 
& Burris, 2011). Moreover, Bmal1 drives expression of REV-ERBα/β, 
suggesting that REV-ERBs could control Aβ uptake in microglia 
downstream of Bmal1. As expected, SR8278 treatment (20 μM) up-
regulated Bmal1 (Figure 3a) and increased fAβ1–42 uptake by BV-2 

F I G U R E  1   Patterns of circadian gene expression in murine peritoneal macrophages in vitro and microglia in vivo. (a) The expression of 
core clock protein, BMAL1, and Aβ in the cortex of WT and 5XFAD at 6.5 months. *p < .05, ***p < .001 compared to WT. (b) Comparing the 
mRNA levels of Per1/Per2 in the cortex and hippocampus of WT and 5XFAD. *p < .05 compared to WT. (c) The expression of several clock-
related genes in peritoneal macrophages is time-dependent
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cells relative to vehicle treatment in a dose-dependent manner 
(Figure 3b). To verify that the effect of SR8278 was on Aβ uptake, not 
its degradation, BV2 cells were treated with a Bafilomycin 1A (Baf) 
which blocks autophagic flux. We measured engulfed fAβ1–42 levels 
in cell lysate after 2 and 8 hr under the Baf treatment. SR8278 again 
increased the amount of engulfed fAβ1–42 even when degradation 
was blocked (Figure 3c,d). This effect was more obvious after 8 hr 
fAβ1–42 treatment. In addition, SR8278 significantly increased Aβ in-
ternalization-related receptors such as CD36 and TREM2, as well as 
the TREM2 adaptor gene DAP12 (Figure 3e). Altogether, these data 

indicate that in BV-2 cells, alterations of circadian gene expression 
modulate fAβ1–42 uptake and that pharmacologic inhibition of REV-
ERBs increased fAβ1–42 uptake.

2.3 | siRNA-mediated REV-ERB knockdown 
accelerates the fAβ1–42 uptake in primary microglia

To confirm the enhancement of microglial fAβ1–42 uptake following 
REV-ERBs inhibition, we measured amount of engulfed fAβ1–42 in 

F I G U R E  2   The phagocytic capacity of BV-2 microglia varies with circadian gene expression. (a) The pattern of the clock gene Bmal1 
expression in BV-2 cells. BV-2 cells were synchronized with 50% horse serum (HS), and total RNA was extracted every 4 hr for 28 hr. (b) The 
rate of Aβ degradation in synchronized BV-2 cells. The graph shows the densitometric quantification of the immunoblot bands. (c) fAβ1-42 
internalization was more efficient at circadian time (CT) 4 than at CT12. Representative Western blot and relative band densities of Aβ in 
BV-2 cell lysates at different time points (1, 2, 4, and 8) after fAβ1-42 treatment. (d) Total amount of engulfed Aβ in the cell lysate after 2 hr. 
We treated fAβ1-42 (1 µM) in synchronized BV-2 Cells at the different time point, Peak (CT4) and Nadir (CT12), respectively. **p < .01. (P: 
Peak, N: Nadir) (e) Representative fluorescent images of FITC-fAβ1-42-positive cells over time (left) and (f) normalized fluorescence intensity 
values at CT4 and CT12 (right). BV-2 cells were initially treated with 100 nM FITC-fAβ1-42. **p < .01
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primary mouse microglia using siRNA targeting both REV-ERBs. We 
achieved a only partial knockdown of Rev-erbα (35%) and Rev-erbβ 
(60%) at the transcription levels, but it was adequate to induce in-
creased expression of Bmal1 (Figure 4a). We found that fAβ1–42 uptake 
was induced in siREV-ERBs transfected primary microglia but was not 
affected in cells transfected with control siRNA (Figure 4b). We also 
used siRNA to knockdown REV-ERBβ levels in primary microglia from 
REV-ERBα knockout (RKO) mice (Figure 4c) and then measured the 
levels of fAβ1–42 after 2 hr treatment. As we expected, fAβ1–42 uptake 
was increased in siREV-ERBβ/RKO primary microglia compared with 
siControl-transfected WT primary microglia (Figure 4d). From these 
results, we clearly suggest that microglial fAβ1–42 uptake was regulated 
REV-ERBs-dependent manner.

2.4 | SR8278 upregulates P2Y12R expression and 
promotes M2 polarization

Microglia express many purinergic receptors, including P2Y12R and 
P2X7R. These receptors, which regulate microglia process length, 
have been closely linked to circadian gene expression. Indeed, 
P2Y12R expression and P2X7R expression are directly modulated 

by Bmal1 and Per1, respectively (Hayashi, 2013; Nakazato et al., 
2011). Therefore, we hypothesized that since SR8278 increases 
Bmal1 expression, it might regulate P2Y12R and P2X7R expression 
and subsequently alter microglial morphology. We first examined 
whether SR8278-induced microglial activation was associated with 
changes in P2Y12R expression and P2X7R expression. To test this, 
we analyzed the expression of these receptors in BV-2 cells using 
quantitative PCR (qPCR) and immunocytochemistry. Interestingly, 
SR8278 induced P2Y12R expression at the transcript level in both 
the presence and absence of fAβ1–42 (Figure 5a). It also induced the 
upregulation of Bmal1 but not Per1 (Figure 5a). We then examined 
how changes in P2Y12R expression affected microglial morphology 
by observing cells after SR8278 treatment in the presence or ab-
sence of fAβ1–42. This revealed that SR8278 significantly increased 
both microglial process length and P2Y12R expression (Figure 5b). 
Together, these data suggest that SR8278 increases the expression 
of P2Y12R in microglia, perhaps by regulating Bmal1 expression. 
These effects may initiate microglial chemotaxis to promote fAβ1–42 
internalization. We further investigated whether the elongation 
of microglial processes was induced when Bmal1 was at its peak 
(ZT24) in vivo using brain sectioning. As expected, microglial pro-
cess length was higher at ZT24 than at ZT12 (Figure S2). However, it 

F I G U R E  3   Inhibition of REV-ERBs 
by SR8278 induces Bmal1 and other 
Aβ internalization-related receptors 
and accelerates the Aβ uptake. (a) 
Effects of the REV-ERBs antagonist, 
SR8278 (20 µM) on Bmal1 expression. 
**p < .01. (b) SR8278 increased Aβ 
internalization. Synchronized BV-2 cells 
were preincubated with SR8278 (10 µM, 
20 µM) for 24 hr before treatment with 
fAβ1-42 (1 µM) for 2 hr. **p < .01. (c-d) 
Time-dependent accumulation of Aβ in 
the cell lysate by SR8278 with LC3BII 
accumulation under the Bafilomycin-
treated conditions. Synchronized BV-2 
cells were preincubated with SR8278 
(20 µM) or vehicle DMSO for 24 hr and 
added Bafilomycin (100 nM) for 1 hr. 
Aβ levels were measured at 2 and 8 hr 
after treatment. *p < .05, **p < .01 and 
***p < .001 compared to vehicle-treated 
group. Experiments were replicated 
three times. (e) Aβ internalization-related 
receptors (CD36 and TREM2) and TREM2 
adaptor protein (DAP12) were measured 
after SR8278 (20 µM) treatment. 
***p < .001 compared to vehicle-treated 
group
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was dampened in 5XFAD mice (Figure 5c) along with Bmal1 down-
regulation (Figure S1).

Due to the high levels of microglia phagocytic activation induced 
by SR8278, we hypothesized that SR8278 would promote M2 microg-
lial polarization, as M2 gene expression is associated with phagocytic 
activation. As expected, SR8278 dramatically increased the expression 
of M2 surface markers (CD206, IL-10, and YM-1) and decreased the 
expression of the M1 signature markers (iNOS and Cox-2), indicating a 
shift toward M2 phenotype following SR8278 treatment (Figure 5d). 
These results suggest a role for REV-ERBs on microglia morphology as 
well as their phenotype.

2.5 | Loss of REV-ERBα suppresses amyloid 
plaque pathology

Because we observed a positive effect of REV-ERBα/β knockdown 
or their antagonist SR8278 on the clearance of fAβ1-42 in microglia in 
vitro, we suspected that REV-ERBα-depletion could mitigate amyloid 
plaque deposition in an AD mouse model. To test this, we crossed 
constitutive global REV-ERBα KO mice with 5XFAD mice and ana-
lyzed plaque burden at 3.5  months old, an early plaque deposition 

time point. Using thioflavin-S staining, we found that amyloid plaque 
in the brain including the cortex, hippocampus, and thalamus of 
5XFAD mice was dramatically decreased by REV-ERBα deficiency 
(Figure 6a). We also observed a striking reduction in total levels of Aβ 
using WB (Figure 6b) as well as a decrease in the number and size of 
plaques (Figure 6c–f) in the same brain regions of 5XFAD/RKO mice. 
Hippocampal X34 plaque burden did not reach statistical significance 
in 5XFAD/RKO mice due to a single mouse, but it was a strong trend 
toward a decrease in that region (Figure 6d). Since we observed a re-
duction in the number of plaques in REV-ERBα-deficient 5XFAD mice, 
we evaluated phagocytic microglia surrounding plaques in the brain. 
We stained for Iba1 to label microglia and CD68 to indicate micro-
glial lysosomes, a marker of phagocytic activation. Plaque-associated 
Iba1+/CD68+ microglia were not increased in 5XFAD/RKO compared 
with the cortex of 5XFAD (Figure 6e,f). This may be due to the mark-
edly decreased number of plaques in the 5XFAD/RKO mice leading. 
In contrast, REV-ERBα-deficient mice without plaques showed high 
levels of Iba1 and CD68 at the transcription levels (Figure 6g). We 
suspect that phagocytic microglia activation caused by REV-ERBα 
deletion causes Aβ clearance early in the disease stage and prevents 
plaques from ever forming, thereby also preventing plaque-associated 
inflammation.

F I G U R E  4   Knockdown of REV-ERBα/β 
accelerates the microglial Aβ uptake in 
primary microglia. (a) mRNA Expression 
of Bmal1, Rev-erbα, and Rev-erbβ in 
siREV-ERBα/β-transfected WT mouse 
primary microglia. **p < .01, ***p < .001 
compared to siControl-transfected 
group. (b) Internalized Aβ levels in the cell 
lysate of siREV-ERBα/β-transfected WT 
mouse primary microglia and siControl-
transfected group, after 2 hr of Aβ 
exposure. (c) Expression of Bmal1 and 
Rev-erbβ in siREV-ERBβ-transfected RKO 
mouse primary microglia. ***p < .001 
compared to siControl-transfected 
cells. (d) Internalized Aβ levels in the cell 
lysate of siREV-ERBβ-transfected RKO 
mouse primary microglia and siControl-
transfected cells. *p < .05 compared to 
siControl-transfected cells
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2.6 | Loss of REV-ERBα prevents plaques-associated 
increases in DAM markers and synapse loss in 
5XFAD mice

Because amyloid plaque deposition is associated with the accumula-
tion of disease-associated microglia (DAM) (Keren et al., 2017), we 
examined expression of the DAM markers Trem2, Clec7a, and CD45 
within the cortex of 5XFAD/RKO compared with the 5XFAD. All of 
these markers were significantly increased in 5XFAD but were in-
creased to a lesser degree in RKO/5XFAD mice (Figure 7a). CD206 

and Arginase 1 were both decreased in 5XFAD brain, while their lev-
els were preserved in 5XFAD/RKO mice, suggesting that REV-ERBα 
deletion can promote a phagocytic M2-like state (Figure 7b), similar 
to our results in vitro (Figure 5d). Pro-inflammatory cytokines IL-6 
and IL-1β were unchanged in both 5XFAD and RKO/5XFAD at this 
young age (Figure 7b). We further observed a decrease in synap-
tic proteins (Synapsin and PSD95) in 5XFAD cortex which was res-
cued in 5XFAD/RKO mice (Figure 7c). It is likely that the diminished 
plaque burden in 5XFAD/RKO mice is what drives these changes in 
DAM marker expression and synaptic protein levels, though direct 

F I G U R E  5   SR8278 induces microglial process extension and expression of P2Y12R and Bmal1. (a) In both the presence and absence of 
fAβ1-42, SR8278 treatment significantly induced P2Y12R and Bmal1, but not P2X7R or Per1, in a dose-dependent manner. Synchronized BV-2 
cells were pretreated with SR8278 (20 µM) for 24 hr before treatment with fAβ1-42 (1 µM, 2 µM) for 2 hr. Each gene was analyzed using 
qPCR. *p < .05, **p < .01. (b) SR8278 (20 µM) recovered the fluorescence intensity of Bmal1 and P2Y12R and increased microglial process 
length in either the absence or presence of fAβ1-42 (P2Y12R in red and Bmal1 in green). The graph shows the average length of the longest 
microglial processes from the 46 microglia in each group. ***p < .001 compared to the vehicle-treated group and ###p < .001 compared to the 
fAβ-treated group. (c) The expression of M1-type Markers (iNOS, Cox-2) and M2-type markers (CD206, IL-10, YM-1) after SR8278 (20 µM) 
treatment for 24 hr in BV-2 cells was determined using qPCR. ***p < .001 compared to the vehicle-treated group
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F I G U R E  6   Deletion of REV-ERBα mitigates amyloid plaque deposition in 5XFAD mice. (a) Representative image from thioflavin-S 
staining of the brain sections including the cortex, hippocampus, and thalamus from 5XFAD and 5XFAD/REV-ERα knockout (RKO) mice 
at 3.5 months. (n = 6–7 mice were analyzed per group). (b) Western blot analysis of Aβ peptide (4KDa) and β-actin expression in each brain 
lysate. β-actin was used as a loading control. **p < .01, ***p < .001 compared to the 5XFAD. (c) Representative image of X34 staining in the 
brain of 5XFAD and 5XFAD/RKO. (d) Quantification of X34-positive plaque number and % area of X34 staining for each group mice brain 
using Image J. *p < .05, **p < .01 compared to the 5XFAD. (e) Representative images from confocal analysis of IBA1 and CD68 staining 
surrounding X34-positive plaques in the cortex of 5XFAD and 5XFAD/RKO (X34 in Blue, IBA1 in Red, and CD68 in Green) (f) Quantification 
of X34-positive plaque and plaque-associated microglia (Iba1)/phagocytic microglia (CD68). Total volume of Iba1 and CD68 were normalized 
by X34 volume for each plaque. **p < .01 compared to the 5XFAD (n = 30–44 plaques) (g) mRNA expression of Iba1 and CD68 in the cortex 
of each group mice (WT, RKO, 5XFAD, 5XFAD/RKO). *p < .05, **p < .01, and ***p < .001

F I G U R E  7   REV-ERBα deletion in 5XFAD mice mitigates changes in DAM and synaptic markers and induces M2 microglial markers 
without alteration of APP processing. (a) mRNA expression of DAM markers including TREM2, CD45, and Clec7a and (b) pro-inflammatory 
cytokines (IL-6 and IL-1β) as well as the M2 surface markers (CD206 and Arginase1) in the cortex of WT, 5XFAD, and 5XFAD/RKO. *p < .05, 
***p < .001 compared to WT. #p < .05 and ##p < .01 compared to the 5XFAD. (c) Western blot analysis of synaptic markers PSD95 and 
synapsin II in the cortex of all three different genotypes of mice. β-actin was used as a loading control. **p < .01 compared to WT and 
##p < .01 compared to the 5XFAD. (d) Total amount of APP in the cortex of each group of mice by Western blot and (e) qPCR analysis of Aβ 
degradating enzymes (IDE, MMP2, and MMP9) from the same group of mice. ***p < .001 compared to WT
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effects of REV-ERBα on plaque-related microglial changes cannot 
be excluded.

To ensure that these results were not due to differences in 
transgene expression, we examined the levels of genes and proteins 
involved in Aβ synthesis and degradation. Western blot analysis 
showed no differences between 5XFAD and 5XFAD/RKO in APP 
protein (Figure 7d), and transcript levels of Aβ-degradating enzymes 
including IDE, MMP2, and MMP9 showed no significant changes 
between the two genotype (Figure 7e), suggesting that REV-ERBα 
depletion did not alter APP expression and processing. Together, our 
findings indicate that REV-ERBs have important role for Aβ clear-
ance, likely via microglia, leading to diminished plaque accumulation 
in REV-ERBα-deficient mice.

3  | DISCUSSION

Our study is the first to show that the microglial phagocytosis of Aβ 
undergoes circadian regulation. Herein, we demonstrated that the 
pharmacological inhibition of circadian repressor REV-ERBα/β using 
SR8278 enhanced microglial Aβ phagocytosis activity and increased 
Bmal1 expression as well as induction of the Aβ internalization-related 
receptors, CD36 and TREM2. Furthermore, we observed induction 
of P2Y12R, a microglia-specific purinergic receptor, by SR8278 treat-
ment, and found that SR8278 also led to M2 polarization in vitro and 
in vivo. Genetic knockdown of REV-ERBs also enhanced Aβ uptake 
by microglia, and global deletion of REV-ERBα strikingly reduced 
amyloid plaque burden without alteration of APP processing enzymes 
and amyloid precursor protein (APP) in the brain of 5XFAD mice. 
Disease-associated microglia markers (DAMs) including Clec7a, CD45, 
and TREM2 were increased in 5XFAD mice but virtually returned to 
normal levels when REV-ERBα was deleted. Ultimately, our results 
strongly suggest that REV-ERBs inhibition could be considered as a 
therapeutic strategy for enhancing microglia-mediated Aβ degradation 
and limiting amyloid plaque deposition in AD.

Numerous studies have suggested that the circadian system 
plays a pivotal role in neurodegenerative/neuroinflammatory dis-
eases such as AD and Parkinson's disease (Musiek & Holtzman, 
2016). Indeed, sleep and circadian dysfunction may manifest very 
early in AD progression (Musiek et al., 2018). Furthermore, chronic 
sleep deprivation increases amyloid plaque deposition (Kang et al., 
2009), while sleep augmentation induced by the genetic deletion 
of orexin strongly suppresses amyloid plaque formation in AD mice 
(Roh et al., 2014). Moreover, disruption of the circadian system by 
deletion of Bmal1 accelerates plaque accumulation in APP/PS1 mice 
(Kress et al., 2018), though the mechanisms remain unclear. Despite 
increasing evidence that molecular clockwork exists in neuroglia, in-
cluding microglia (Fonken et al., 2015; Jackson, 2011), the role of the 
microglial circadian system in amyloid clearance remained largely 
unknown. Our study shows that the core clock protein Bmal1 was 
more highly expressed at ZT24 than at ZT12 in murine microglia and 
this was completely reversed in 5XFAD mice (Figure S1), suggest-
ing microglial clock disruption in this amyloidosis model. We also 

demonstrate a time-of-day dependence of microglial Aβ uptake, in-
dicating that the microglial molecular clock machinery can be a key 
regulator of microglial activity in AD. Further studies are needed to 
explore the effect of AD pathology on microglial circadian clocks 
and the mechanisms by which the clock regulates microglial phago-
cytic function.

Perhaps our most important finding was that suppression of 
REV-ERBα/β enhanced microglial Aβ phagocytosis in vitro and mit-
igate plaque deposition in 5XFAD mice in vivo. We demonstrated 
using REV-ERBs antagonist, SR8278 and siRNA-mediated knock-
down experiments in vitro, as well as genetic manipulation of REV-
ERBα in vivo. SR8278 induced Bmal1 expression and accelerated 
microglial Aβ uptake even when lysosomal degradation was blocked 
with Bafilomycin A1 (Figure 3c), leading to an increase in the Aβ en-
docytosis-related receptors CD36 and TREM2 (Figure 3d). Microglia 
cells express diverse receptors that cooperate in the recognition, 
internalization, phagocytosis, and clearance of Amyloid-β, as well 
as the inflammatory response (Doens & Fernández, 2014). Among 
them, CD36/TLR4/TREM2 were considered as recycling receptors 
for Aβ phagocytosis and necessary factors for the LC3-associated 
endocytosis (LANDO) pathway (Heckmann et al., 2019.). We suspect 
that REV-ERBs activity might participate in LANDO via modulating 
the expression of receptors in microglia. TREM2 is a well-character-
ized Aβ receptor that participates in Aβ endocytosis and elimination 
and can help glia-mediated synaptic engulfment in neurodevelop-
ment (Jay et al., 2019; Zhong et al., 2019). Interestingly, SR8278 sig-
nificantly increased the expression of DAP12 which is considered as 
TREM2 adaptor in microglia, as well as induced TREM2 levels, indi-
cating that SR8278 could propagate TREM2 downstream signaling 
in microglia. TREM2 induction was also seen following REV-ERBα 
deletion in another paper (Griffin et al., 2019). Moreover, numerous 
studies support that TREM2 has critical role on tauopathy and amy-
loid pathology (Leyns et al., 2019). Thus, we suspect that REV-ERBs 
could be a potent candidate for AD therapy targeting tau. However, 
it still remains to be seen how REV-ERBs impact tau spreading/prop-
agation. Taken together, our results suggest that pharmacological in-
hibition of REV-ERBs may improve Aβ pathology through activating 
the microglial phagocytic activity in patients with AD.

Our data suggest that SR8278 may enhance microglial phagocy-
tosis of Aβ by modulating P2Y12R expression. Microglia are sensitive 
to environmental changes and can immediately transform their mor-
phology in response to purinergic receptor activation (Koizumi et 
al., 2013). Specifically, microglia that are initially highly branched or 
ramified can undergo process extension and increase P2Y12R expres-
sion. Recent studies have shown that cortical microglia rhythmically 
express P2Y12R throughout the day (Hayashi, 2013). This suggests 
that molecular clockwork may regulate microglial phagocytic be-
havior by modulating purinergic receptor expression, which could 
further accelerate the clearance of Aβ aggregates. In this study, we 
showed that SR8278 enhanced P2Y12R expression, thereby increas-
ing microglial process length and enabling the phagocytosis of Aβ ag-
gregates (Figure 5). Another purinergic receptor subtype—P2X7—is 
selectively upregulated by ATP-induced Per1 expression (Nakazato 
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et al., 2011), but was unaffected by SR8278 (Figure 5a). In addition, 
the process length of microglia in 5XFAD mice (Figure 5c) exhibited 
a marked shortening at ZT24 with the reduction in Bmal1 (Figure 
S1), indicating that lower Bmal1 expression or reduced functioning 
may be specifically associated with microglia morphology and activ-
ity. Altogether, these results suggest that SR8278 modulates P2Y12R 
expression in microglia, perhaps by inducing Bmal1, and this may in-
fluence microglial morphology and Aβ uptake.

Given the effects of SR8278 on purinergic receptor expression 
and process length, it is possible that SR8278 promotes M2-like mi-
croglial polarization. Recent several studies and researchers suggest 
that promoting the differentiation toward the neuroprotective M2 
polarization is protective in models of neurodegenerative diseases 
and traumatic brain injury (Song & Suk, 2017). In our studies, SR8278 
dramatically increased M2 type markers such as CD206, IL-10, and 
YM1 in vitro as well as in vivo (Figurea 5d and 7b), indicating that it 
may further promote a phagocytic microglial phenotype. Moreover, 
the previous report suggests that autophagy activation can accel-
erate M2 microglia polarization under both basal and inflammatory 
conditions (Jin et al., 2018), and REV-ERBs has been linked to regu-
lation of autophagy (Woldt et al., 2013). From these results, we sus-
pect that SR8278 might induce autophagy by suppressing REV-ERB 
function, promoting Aβ clearance and M2-like polarization.

Consistently, our study also showed that lower DAM markers 
which reflect “bad microglia” accompanied by more M2 microglia 
in REV-ERBα-deficient 5XFAD mouse brain. These data imply that 
modulating the REV-ERBs activity can improve the brain damage via 
releasing the protective factors from M2 microglia. We observed 
that REV-ERB inhibition/deletion alters microglial activation state to 
promote the removal of Aβ both in vitro and in vivo. Interestingly, 
REV-ERBα-deficient mice highly expressed Iba1 and CD68 as mark-
ers of microglia and phagocytic microglia, respectively, in the brain 
(Figure 6g). A previous report also showed significantly increased 
Iba1 and CD68 expression in hippocampal microglia of REV-ERBα 
knockout mice (Griffin et al., 2019). Thus, we suspect that high lev-
els of phagocytic microglia, evoked by REV-ERBα depletion, are 
likely responsible for the marked decrease in plaque accumulation 
in RKO/5XFAD mice. Because these mice accumulate less plaque, 
there is a concomitant decrease in DAM microglial markers, as well 
as plaque-related synapse loss (Figure 7c). However, it is possible 
that REV-ERBs inhibition might directly promote synapse survival 
and limit DAM microglial marker expression independently of its ef-
fect on plaque burden, perhaps by promoting M2-like polarization. 
Furthermore, because global, constitutive REV-ERBα mice were 
used in our study with 5XFAD mice, we cannot exclude important 
contributions of cell types other than microglia, as REV-ERBs likely 
play important roles in neurons and other brain cell types. However, 
we did not observe changes in APP processing or other Aβ metabolic 
enzyme expression. Future studies in cell type-specific REV-ERBα 
KO mice will be needed to address these possibilities in more detail.

Our studies investigating the REV-ERBs antagonist SR8278 to 
definitively demonstrate the role of REV-ERBs in microglial activa-
tion for Aβ clearance. Our data reveal that the inhibition of REV-ERBs 

effectively enhanced microglial phagocytosis in vivo and in vitro and 
also selectively increased P2Y12R expression in microglia, suggesting 
that SR8278 can modulate microglial process motility and promote 
M2-like polarization. In vivo, REV-ERBα strongly suppressed plaque 
accumulation and downstream Aβ toxicity in 5XFAD mice. Ultimately, 
our results strongly suggest that the circadian system intimately con-
trols microglial activation, potentially though REV-ERBs regulation, and 
it has therapeutic implications for a number of neurological disorders.

4  | E XPERIMENTAL PROCEDURES

4.1 | Animals

5XFAD and REV-ERBα knockout (KO) mice were purchased from 
Jackson Laboratories. REV-ERBα KO mice have a β-geo cassette re-
placing part of exon 2, all of exons 3–5, and part of exon 6 of the 
nuclear receptor subfamily 1, group D, member 1 (Nr1d1) gene, and 
abolishing gene function. To generate REV-ERBα deficient 5XFAD 
mice, 5XFAD mice were bred with REV-ERBα KO mice. Each group 
of mouse was housed in a different cage and was maintained at a 
constant ambient temperature (22 ± 1°C) with a 12:12 hr light-dark 
cycle and free access to water and food. All procedures were ap-
proved by the Institutional Animal Care and Use Committee of the 
Asan Institute for Life Sciences in Seoul, Korea.

4.2 | Reagents

SR8278 (#554718; Thermo Fisher Scientific) was dissolved in di-
methylsulfoxide (DMSO). Solutions were aliquoted to avoid freeze-
thawing and stored at −80°C. Lipopolysaccharide (#L3024) was 
purchased from Sigma-Aldrich.

4.3 | Synthesis of fibrillar Aβ1-42

Aβ1-42 (#H1368; Bachem) and fluorescein isothiocyanate (FITC)-
conjugated Aβ1-42 (#M2585; Bachem) were dissolved in DMSO to a 
final concentration of 500 µM (based on the original Aβ1–42 monomer 
concentration) and stored at −80°C. Before use, fibrillar Aβ1–42 (fAβ1-

42) was preincubated at 37°C for 24 hr in Dulbecco's modified Eagle's 
medium (DMEM) with high glucose (#21013024; Life Technologies). 
These compounds were then diluted 1:10 to a final concentration of 
50 µM. FITC-Aβ1-42 was always kept in the dark.

4.4 | Plaque staining

4.4.1 | Thioflavin-S staining

Staining was performed using thawed fresh-frozen sections post-
fixed in 4% paraformaldehyde (PFA). Free-floating brain sections 
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were washed with 1× phosphate-buffered saline (PBS). The sections 
were soaked in 1% thioflavin S solution for 8 min. Subsequently, sam-
ples were washed with 70% ethyl alcohol (EtOH) for 5 min and were 
then washed twice with PBS. Sections were mounted using a fluo-
rescence mounting medium (#S3023; Dako) after minimal drying.

4.4.2 | X34 staining

Free-floating brain sections were washed three times with 1XPBS 
and incubated with 0.25% Triton X-100 in 1XPBS for 30 min at RT. 
The sections were stained with X34 staining buffer (1:3,000) for 
20  min and then washed three times with X34 wash buffer (40% 
EtOH in 1XPBS) for 2 min at RT. Sections were mounted using fluo-
rescence mounting medium (#S3023; Dako) after two times of wash 
with 1XPBS for 5 min.

4.5 | Cell culture

Murine-immortalized microglial BV-2 cells were grown in DMEM 
supplemented with 5% fetal bovine serum (#10082147; Life 
Technologies) and 100 U/ml penicillin and streptomycin (#15140122; 
Life Technologies). All cells were maintained at 37°C in a humidified 
atmosphere with 5% CO2.

4.6 | Isolation of peritoneal macrophages

Wild-type mice were injected intraperitoneally with 3 ml of 1× PBS 
at ZT 6, 12, 18, 24, and 30 (n = 3 per point in time). Three hours later, 
primary macrophages were collected from the peritoneal cavities of 
the anesthetized animals using 10-ml syringes. Macrophages were ob-
tained by centrifugation at 400 g and 4°C. Following washing with PBS 
twice, each pellet was analyzed using qPCR.

4.7 | Isolation of primary microglia

Microglia were isolated from mixed glial that were obtained from 
the cerebral cortex of postnatal days 1–3 (P1-3) mice. Cortices were 
dissected stripped of meninges with cold DMEM and trypsinization 
with 0.05% trypsin-EDTA at 37°C for 10 min. Cells were suspended 
with complete media containing GM-CSF (5  ng/ml) after centrifu-
gation for 5 min and replated coated with PDL. Floating microglia 
were collected from the mixed glial cultures by shaking the flask at 
225 rpm for 2 hr after 10 days.

4.8 | siRNA transfection

Primary microglia were transfected with siRNA using lipo-
fectamine RNAiMAX (Life Technologies) in OptiMEM (Life 

Technologies) according to the manufacturer's instructions. siR-
NAs targeting mouse Nr1d1, Nr1d2, and scramble were obtained 
from Dharmacon (Lafayette, CO). A siRNA to RNAiMAX ratio of 
1:1.25 was used, and 40 pmol of siRNA (2.5 μL of 20 μM stock) 
was added to each well of a 12 well plate. Media was changed 
after 7 days.

4.9 | RNA preparation and qPCR analysis

Total RNA was extracted from cells using a NucleoSpin RNA kit 
(#740955.250; Macherey-Nagel) according to the manufacturer's in-
structions. RNA concentrations were determined using a Nanodrop 
ND 1000 spectrophotometer. cDNA was then synthesized using ap-
proximately 1 µg of RNA and the ReverTra Ace qPCR RT Kit (#FSQ-
101; Toyobo) according to the manufacturer's instructions. qPCR 
was performed on diluted cDNA samples using either iQ SYBR 
Green Supermix (#1708882; Bio-rad) or TaqMan primers and mat-
ers mix (Thermo) with a StepOnePlus RT-PCR system. Melting curve 
analysis confirmed the specificity of each SYBR Green reaction. The 
PCR primer sequences are listed in Table 1.

4.10 | Immunoblot

Samples were harvested with a PRO-PREP protein extraction kit 
(#17081; iNtRON) supplemented with phosphatase inhibitor cock-
tail 2 (#P5726; Sigma-Aldrich) and centrifuged to remove cell debris. 
The concentrations of the prepared protein samples were determined 
using Bradford assays. Protein samples were separated by electropho-
resis on 10%–15% sodium dodecyl sulfate–polyacrylamide gels and 
then transferred electrophoretically to polyvinylidene difluoride mem-
branes. The membranes were blocked with 5% skim milk and then 
washed with PBS containing 0.05% Tween® 20. The membranes were 
then gently agitated and incubated at 4°C overnight with the follow-
ing primary antibodies: anti-Aβ (1:500, 6E10; #SIG-39340 or 1:1,000, 
82E1; IBL-America), anti-β-actin (1:1,000, AC-15, #A5441; Sigma), and 
anti-α-tubulin (1:1,000, T5168; Merck). The following day, the mem-
branes were washed and then incubated with horseradish peroxidase-
labeled anti-rabbit or anti-mouse secondary antibodies for 40 min at 
room temperature. Subsequently, membrane-bound horseradish per-
oxidase-labeled antibodies were detected using an enhanced chemi-
luminescence detection system including the Pierce ECL Western 
Blotting Substrate (#32106; Thermo Fisher Scientific). Densitometric 
quantification of the bands was conducted using ImageJ (Image 
Processing and Analysis in Java; National Institutes of Health). Protein 
levels were normalized to β-actin or α-tubulin for quantification.

4.11 | Immunocytochemistry

Cells were seeded onto 24-well plates with poly-l-lysine-coated cov-
erslips and fixed with 4% paraformaldehyde (#A2025; Biosesang) 
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for 15 min. Subsequently, each well was washed with PBS and then 
incubated in blocking medium (3% bovine serum albumin [Probumin, 
#821006; Millipore] in PBS) for 30  min at room temperature. The 
samples were incubated for 1  hr with the following primary anti-
bodies diluted in PBS with 0.1% Triton X-100 and 10% HS: rabbit 
P2Y12R (1:500, NBP1-78249, #64805; Novus Biologicals), mouse 
Bmal1 (1:200, B-1, #sc-365645; Santa Cruz Biotechnology), and 
rabbit Iba1 (1:1,000, #016-20001; Wako Chemicals). After washing 
them three times with PBS, the cells were incubated with secondary 
Alexa Fluor™ 488- and 594-conjugated goat anti-mouse and goat 
anti-rabbit antibodies (Jackson ImmunoResearch Laboratories) di-
luted to 1:500 in PBS with 0.1% Triton X-100 and 10% HS for 30 min 
at room temperature. The nuclei were stained with 4′,6-diamidino-
2-phenylindole (DAPI) for 10 min, and then, the cells were washed 
with PBS and mounted using a fluorescence mounting medium 
(#S3023; Dako).

4.12 | Immunohistochemistry

Fixed hemispheres of the mouse brains were cut into 35-μm sections 
(coronal sections) using a Leica VT1000S vibratome. Free-floating 
sections were washed with PBS three times for 5 min, blocked with 
3% bovine serum albumin for 30 min, and finally incubated with pri-
mary antibodies diluted in PBS [(rabbit Iba1, 1:1,000, #016-20001; 
Wako Chemicals), (rat CD68, 1:150, MCA1957; Bio-rad)] overnight 
at 4°C. Incubated slices were then washed with PBS three times for 
5 min, incubated for 2 hr at room temperature with a secondary an-
tibody (1:400; Jackson Laboratories) in PBS, and then washed with 
PBS three times for 5 min at room temperature. Cells were stained 
with DAPI and mounted using fluorescence mounting medium 
(#S3023; Dako). Fluorescent images were taken with a Zeiss Axio 
Observer Z1 microscope and processed using AxioVision 4.8.2.

4.13 | Confocal Imaging and 3D Reconstructions

Images were acquired using a LSM 710 Confocal microscope (Zeiss) 
and the ZEN 2011 software package. Laser and detector settings 
were maintained constant for the acquisition of each immunostain-
ing. Z stacks were obtained from 30-μm-thick sections using 
Colocalization analysis, and 3D reconstructions were created using 
Imaris 8 software. For quantification of plaque volume, images were 
imported to Fiji software (Image J) and data channels were sepa-
rated (image/color/split channels). The volume of IBA1- and CD68-
positive microglia around plaques were measured in the Cortex over 
the length of layers 3–5 using Image J.

4.14 | Statistical analysis

For the statistical analysis, Student's t tests (comparing two groups) 
or one-way analyses of variance (ANOVAs) with Tukey post hoc tests 

TA B L E  1   Primer sequences used for quantitative PCR

Gene Primer sequences

Bmal1 F: 5'-CCT AAT TCT CAG GGC AGC AGA T-3'
R: 5'-TCC AGT CTT GGC ATC AAT GAG T-3'

Clock F: 5'-TTG CTC CAC GGG AAT CCT T-3'
R: 5'-GGA GGG AAA GTG CTC TGT TGT AG-3'

Cry1 F: 5'-AAA AAT TCA CGC CAC AGG AG-3'
R: 5'-CGA ATG AAT GCA AAC TCC CT-3'

Cry2 F: 5'-GCT CCC AGC TTG GCT TGA-3'
R: 5'-TGT CCC TTC CTG TGT GGA AGA-3'

Per1 F: 5'-GTG TCG TGA TTA AAT TAG TCA G-3'
R: 5'-ACC ACT CAT GTC TGG GCC-3'

Per2 F: 5'-GCG GAT GCT CGT GGA ATC TT-3'
R: 5'-GCT CCT TCA GGG TCC TTA TC-3'

Rev-erbα F: 5'-AGC TCA ACT CCC TGG CAC TTA C-3'
R: 5'-CTT CTC GGA ATG CAT GTT GTT C-3'

RORα F: 5'-GCA CCT GAC CGA AGA CGA AA-3'
R: 5'-GAG CGA TCC GCT GAC ATC A-3'

P2Y12R F: 5'- CAC AGA GGG CTT TGG GAA CTT A -3'
R: 5'- TGG TCC TGC TTC TGC TGA ATC -3'

P2X7R F: 5'- TGT GTG CAT TGA CTT GCT CA -3'
R: 5'- CTT GCA TTT TCC CAA GC -3'

COX-2 F: 5'-GCA AAT CCT TGC TGT TCC AAC C-3'
R: 5'-GGA GAA GGC TTC CCA GCT TTT G-3'

CD206 F: 5'-AGT TGG GTT CTC CTG TAG CCC AA-3'
R: 5'-ACT ACT ACC TGA GCC CAC ACC TGC 

T-3'

Nrf-2 F: 5'-CAA GAC TTG GGC CAC TTA AAA 
GAC-3'

R: 5'-AGT AAG GCT TTC CAT CCT CAT CAC-3'

CD36 F: 5'- TCG GAA CTG TGG GCT CAT -3'
R: 5'- CCT CGG GGT CCT GAG TTA TAT TTT 

C -3'

TREM2 F: 5'- TGG GAC CTC TCC ACC AGT T -3'
R: 5'- GTG GTG TTG AGG GCT TGG -3'

DAP12 F: 5'- GAT TGC CCT GGC TGT GTA CT -3'
R: 5'- CTG GTC TCT GAC CCT GAA GC -3'

CD45 F: 5'- TCA GCA CTA TTG GTA GGC TCC -3'
R: 5'- ATG GTC CTC TGA ATA AAG CCC A -3'

Clec7a F: 5'- GTG CAG TAA GCT TTC CTG GG -3'
R: 5'- TCC CGC AAT CAG AGT GAA G -3'

Arginase1 F: 5'- TCA CCT GAG CTT TGA TGT CG -3'
R: 5'- TTC CCA AGA GTT GGG TTC AC -3'

YM1 F: 5'- ACC CCT GCC TGT GTA CTC ACC T -3'
R: 5'- CAC TGA ACG GGG CAG GTC CAA A -3'

IL-10 F: 5'- AAT TCC CTG GGT GAG AAG CTG -3'
R: 5'- TCA TGG CCT TGT AGA CAC CTT G -3'

IDE F: 5'- GAA CGA TGC CTG GAG ACT CTT -3'
R: 5'- TTC CCT TAC GTC GAT GCC TTC -3'

MMP2 F: 5'- CAA GTT CCC CGG CGA TGT C -3'
R: 5'- TTC TGG TCA AGG TCA CCT GTC -3'

MM9 F: 5'- GAG ACG GGT ATC CCT TCG AC -3'
R: 5'- TGA CAT GGG GCA CCA TTT GAG -3'

GAPDH F: 5'-CAT GGC CTT CCG TGT TCC TA-3'
R: 5'-CCT GCT TCA CCA CCT TCT TGA-3'
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were performed using GraphPad Prism software 8 and Sigma Plot 
8.0. Differences were considered significant at *p <  .05, **p <  .01, 
and ***p <  .001. All experiments were replicated six times and are 
shown as the mean ± SEM.
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