33,567 research outputs found

    Electronic structure of Zr-Ni-Sn systems: role of clustering and nanostructures in Half-Heusler and Heusler limits

    Full text link
    Half-Heusler and Heusler compounds have been of great interest for several decades for thermoelectric, magnetic, half-metallic and many other interesting properties. Among these systems, Zr-Ni-Sn compounds are interesting thermoelectrics which can go from semiconducting half-Heusler (HH) limit, ZrNiSn, to metallic Heusler (FH) limit, ZrNi2_2Sn. Recently Makogo et al. [J. Am. Chem. Soc. 133, 18843 (2011)] found that dramatic improvement in the thermoelectric power factor of HH can be achieved by putting excess Ni into the system. This was attributed to an energy filtering mechanism due to the formation of FH nanostructures in the HH matrix. Using density functional theory we have investigated clustering and nanostructure formation in HH1x_{1-x}FHx_x systems near the HH and FH ends and found that excess Ni atoms in HH tend to stay close to each other and form nanoclusters of FH. On the other hand, there is competing interaction between Ni-vacancies in FH which prevent them from forming HH nano clusters. Effects of nano inclusions on the electronic structure at both HH and FH ends will be discussed.Comment: Published in J. Phys.: Condens. Matte

    Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice

    Full text link
    We investigate the phase diagram of a discrete version of the Maier-Saupe model with the inclusion of additional degrees of freedom to mimic a distribution of rodlike and disklike molecules. Solutions of this problem on a Bethe lattice come from the analysis of the fixed points of a set of nonlinear recursion relations. Besides the fixed points associated with isotropic and uniaxial nematic structures, there is also a fixed point associated with a biaxial nematic structure. Due to the existence of large overlaps of the stability regions, we resorted to a scheme to calculate the free energy of these structures deep in the interior of a large Cayley tree. Both thermodynamic and dynamic-stability analyses rule out the presence of a biaxial phase, in qualitative agreement with previous mean-field results

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Equestrian Perniosis

    Get PDF

    Fitopatógenos e a biodiversidade de espécies na Amazônia.

    Get PDF
    Doenças e pragas de espécies frutíferas; As relações patógenos: hospedeiro; Variabilidade genética em fungos.bitstream/item/98190/1/CPAF-AP-2001-Fitopatogenos-Amazonia.pd

    Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    Get PDF
    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect
    corecore