20 research outputs found

    Identification and functional analysis of NOL7 nuclear and nucleolar localization signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of <it>in vivo </it>tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated.</p> <p>Results</p> <p>An <it>in vitro </it>import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport. Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7.</p> <p>Conclusions</p> <p>These results identify the minimal sequences required for the active targeting of NOL7 to the nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7 localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and nucleolus.</p

    DSG3 As a Biomarker for the Ultrasensitive Detection of Cccult Lymph Node Metastasis in Oral Cancer Using Nanostructured Immunoarrays

    Get PDF
    OBJECTIVES: The diagnosis of cervical lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) patients constitutes an essential requirement for clinical staging and treatment selection. However, clinical assessment by physical examination and different imaging modalities, as well as by histological examination of routine lymph node cryosections can miss micrometastases, while false positives may lead to unnecessary elective lymph node neck resections. Here, we explored the feasibility of developing a sensitive assay system for desmoglein 3 (DSG3) as a predictive biomarker for lymph node metastasis in HNSCC. MATERIALS AND METHODS: DSG3 expression was determined in multiple general cancer- and HNSCC-tissue microarrays (TMAs), in negative and positive HNSCC metastatic cervical lymph nodes, and in a variety of HNSCC and control cell lines. A nanostructured immunoarray system was developed for the ultrasensitive detection of DSG3 in lymph node tissue lysates. RESULTS: We demonstrate that DSG3 is highly expressed in all HNSCC lesions and their metastatic cervical lymph nodes, but absent in non-invaded lymph nodes. We show that DSG3 can be rapidly detected with high sensitivity using a simple microfluidic immunoarray platform, even in human tissue sections including very few HNSCC invading cells, hence distinguishing between positive and negative lymph nodes. CONCLUSION: We provide a proof of principle supporting that ultrasensitive nanostructured assay systems for DSG3 can be exploited to detect micrometastatic HNSCC lesions in lymph nodes, which can improve the diagnosis and guide in the selection of appropriate therapeutic intervention modalities for HNSCC patients

    Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer.

    No full text
    Angiogenesis, the formation of new blood vessels from preexisting vasculature, is essential for many physiological processes, and aberrant angiogenesis contributes to some of the most prevalent human diseases, including cancer. Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals. While pro-angiogenic signaling has been extensively investigated, how developmentally regulated, naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood. In this review, we summarize the current knowledge on how semaphorins and their receptors, plexins and neuropilins, control normal and pathological angiogenesis, with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells. This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies

    Using Heterologous COS-7 Cells to Identify Semaphorin-Signaling Components.

    No full text
    Semaphorins are a family of membrane-bound and secreted type of proteins which were initially identified as chemorepulsive axon guidance molecules. Plexins and neuropilins are two major receptor families of semaphorins, and their common downstream targets are the actin cytoskeleton and cell-to-extracellular matrix adhesions. Semaphorins promote the collapse of growth cones by inducing rapid changes in the cytoskeleton and disassembly of focal adhesion structures. When transfected with appropriate receptors, non-neuronal COS-7 cells exhibit a similar cell collapse phenotype upon semaphorin stimulation. This heterologous system using COS-7 cells has been developed and widely used to investigate semaphorin-signaling pathways. In this chapter, we describe a COS-7 collapse assay protocol used to identify semaphorin-signaling components and a method to produce recombinant class 3 semaphorin proteins

    In Vitro Wound Healing Assays to Investigate Epidermal Migration.

    No full text
    Re-epithelialization after cutaneous injury is a complex and multifaceted process that incorporates numerous cellular components interacting in a myriad of pathways. One of the most crucial aspects of this process is the initiation of keratinocyte migration to fill the wound bed. Re-epithelialization involves both the individual and collective movement of epidermal cells under the control of integrated signaling paradigms. It is therefore essential to develop a simple methodology to dissect the basic movement of epidermal cells in vitro. Scratch assays are relatively simple experiments in which a single layer of cells are plated onto a prepared dish with multiple furrows created in the cell bed. The resulting cellular migration to fill the wound bed can then be imaged and processed quantitatively to investigate migration rates and other factors of interest. Here, we provide important adaptations to the classic scratch assay to make it a robust, reproducible, and quantitative tool for the evaluation of epidermal cell migration

    Dual inhibition of vascular endothelial growth factor receptor and epidermal growth factor receptor is an effective chemopreventive strategy in the mouse 4-NQO model of oral carcinogenesis.

    No full text
    Despite recent therapeutic advances, several factors, including field cancerization, have limited improvements in long-term survival for oral squamous cell carcinoma (OSCC). Therefore, comprehensive treatment plans must include improved chemopreventive strategies. Using the 4-nitroquinoline 1-oxide (4-NQO) mouse model, we tested the hypothesis that ZD6474 (Vandetanib, ZACTIMA) is an effective chemopreventive agent. CBA mice were fed 4-NQO (100 Ī¼g/mL) in their drinking water for 8 weeks and then randomized to no treatment or oral ZD6474 (25 mg/kg/d) for 24 weeks. The percentage of animals with OSCC was significantly different between the two groups (71% in control and 12% in the ZD6474 group; P ā‰¤ 0.001). The percentage of mice with dysplasia or OSCC was significantly different (96% in the control and 28% in the ZD6474 group; P ā‰¤ 0.001). Proliferation and microvessel density scores were significantly decreased in the ZD6474 group (P ā‰¤ 0.001 for both). Although proliferation and microvessel density increased with histologic progression in control and treatment cohorts, epidermal growth factor receptor and vascular endothelial growth factor receptor-2 phosphorylation was decreased in the treatment group for each histologic diagnosis, including mice harboring tumors. OSCC from ZD6474-treated mice exhibited features of epithelial to mesenchymal transition, as shown by loss E-cadherin and gain of vimentin protein expression. These data suggest that ZD6474 holds promise as an OSCC chemopreventive agent. They further suggest that acquired resistance to ZD6474 may be mediated by the expression of an epithelial to mesenchymal transition phenotype. Finally, the data suggests that this model is a useful preclinical platform to investigate the mechanisms of acquired resistance in the chemopreventive setting

    Genetic Identification of SEMA3F as an Antilymphangiogenic Metastasis Suppressor Gene in Head and Neck Squamous Carcinoma.

    No full text
    Head and neck squamous cell carcinomas (HNSCC) often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. HNSCCs are remarkably lymphangiogenic and represent a clear example of a cancer that utilizes the lymphatic vasculature for malignant dissemination; however, the molecular mechanisms underlying lymphangiogenesis in HNSCC is still poorly understood. Of interest, we found that an axon guidance molecule, Semaphorin 3F (SEMA3F), is among the top 1% underexpressed genes in HNSCC, and that genomic loss of SEMA3F correlates with increased metastasis and decreased survival. SEMA3F acts on its coreceptors, plexins and neuropilins, among which neuropilin-2 (NRP2) is highly expressed in lymphatic endothelial cells (LEC) but not in oral epithelium and most HNSCCs. We show that recombinant SEMA3F promotes LEC collapse and potently inhibits lymphangiogenesis in vivo. By reconstituting all possible plexin and neuropilin combinations, we found that SEMA3F acts through multiple receptors, but predominantly requires NRP2 to signal in LECs. Using orthotopic HNSCC metastasis mouse models, we provide direct evidence that SEMA3F re-expression diminishes lymphangiogenesis and lymph node metastasis. Furthermore, analysis of a large tissue collection revealed that SEMA3F is progressively lost during HNSCC progression, concomitant with increased tumor lymphangiogenesis. SEMA3F is localized to 3p21, an early and frequently deleted locus in HNSCC and many other prevalent human malignancies. Thus, SEMA3F may represent an antilymphangiogenic metastasis suppressor gene widely lost during cancer progression, hence serving as a prognostic biomarker and an attractive target for therapeutic intervention to halt metastasis

    Genetic Identification of SEMA3F as an Antilymphangiogenic Metastasis Suppressor Gene in Head and Neck Squamous Carcinoma

    No full text
    Head and neck squamous cell carcinomas (HNSCC) often metastasize to locoregional lymph nodes, and lymph node involvement represents one of the most important prognostic factors of poor clinical outcome. HNSCCs are remarkably lymphangiogenic and represent a clear example of a cancer that utilizes the lymphatic vasculature for malignant dissemination; however, the molecular mechanisms underlying lymphangiogenesis in HNSCC is still poorly understood. Of interest, we found that an axon guidance molecule, Semaphorin 3F (SEMA3F), is among the top 1% underexpressed genes in HNSCC, and that genomic loss of SEMA3F correlates with increased metastasis and decreased survival. SEMA3F acts on its coreceptors, plexins and neuropilins, among which neuropilin-2 (NRP2) is highly expressed in lymphatic endothelial cells (LEC) but not in oral epithelium and most HNSCCs. We show that recombinant SEMA3F promotes LEC collapse and potently inhibits lymphangiogenesis in vivo. By reconstituting all possible plexin and neuropilin combinations, we found that SEMA3F acts through multiple receptors, but predominantly requires NRP2 to signal in LECs. Using orthotopic HNSCC metastasis mouse models, we provide direct evidence that SEMA3F re-expression diminishes lymphangiogenesis and lymph node metastasis. Furthermore, analysis of a large tissue collection revealed that SEMA3F is progressively lost during HNSCC progression, concomitant with increased tumor lymphangiogenesis. SEMA3F is localized to 3p21, an early and frequently deleted locus in HNSCC and many other prevalent human malignancies. Thus, SEMA3F may represent an antilymphangiogenic metastasis suppressor gene widely lost during cancer progression, hence serving as a prognostic biomarker and an attractive target for therapeutic intervention to halt metastasis
    corecore