151 research outputs found

    POTENTIOMETRIC SENSOR FOR HYDROGENE ION BASED ON NEUTRAL CARRIER IN A POLY (VINYL CHLORIDE) MEMBRANE WITH POLYANILINE SOLID CONTACT

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    DEVELOPMENT OF ELECTROACTIVE POLYMETHYLTHIOPHENE BASED DOPAMINE SENSOR

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    A Deep Learning-Based Aesthetic Surgery Recommendation System

    Get PDF
    We propose in this chapter a deep learning-based recommendation system for aesthetic surgery, composing of a mobile application and a deep learning model. The deep learning model built based on the dataset of before- and after-surgery facial images can estimate the probability of the perfection of some parts of a face. In this study, we focus on the most two popular treatments: rejuvenation treatment and eye double-fold surgery. It is assumed that the outcomes of our history surgeries are perfect. Firstly a convolutional autoencoder is trained by eye images before and after surgery captured from various angles. The trained encoder is utilized to extract learned generic eye features. Secondly, the encoder is further trained by pairs of image samples, captured before and after surgery, to predict the probability of perfection, so-called perfection score. Based on this score, the system would suggest whether some sorts of specific aesthetic surgeries should be performed. We preliminarily achieve 88.9 and 93.1% accuracy on rejuvenation treatment and eye double-fold surgery, respectively

    Expression profiling of rice cultivars differing in their tolerance to long-term drought stress

    Get PDF
    Understanding the molecular basis of plant performance under water-limiting conditions will help to breed crop plants with a lower water demand. We investigated the physiological and gene expression response of drought-tolerant (IR57311 and LC-93-4) and drought-sensitive (Nipponbare and Taipei 309) rice (Oryza sativa L.) cultivars to 18 days of drought stress in climate chamber experiments. Drought stressed plants grew significantly slower than the controls. Gene expression profiles were measured in leaf samples with the 20 K NSF oligonucleotide microarray. A linear model was fitted to the data to identify genes that were significantly regulated under drought stress. In all drought stressed cultivars, 245 genes were significantly repressed and 413 genes induced. Genes differing in their expression pattern under drought stress between tolerant and sensitive cultivars were identified by the genotype × environment (G × E) interaction term. More genes were significantly drought regulated in the sensitive than in the tolerant cultivars. Localizing all expressed genes on the rice genome map, we checked which genes with a significant G × E interaction co-localized with published quantitative trait loci regions for drought tolerance. These genes are more likely to be important for drought tolerance in an agricultural environment. To identify the metabolic processes with a significant G × E effect, we adapted the analysis software MapMan for rice. We found a drought stress induced shift toward senescence related degradation processes that was more pronounced in the sensitive than in the tolerant cultivars. In spite of higher growth rates and water use, more photosynthesis related genes were down-regulated in the tolerant than in the sensitive cultivars

    Joint optimization of monitoring quality and replacement decisions in condition-based maintenance

    Get PDF
    The quality of condition monitoring is an important factor affecting the effectiveness of a condition-based maintenance program. It depends closely on implemented inspection and instrument technologies, and eventually on investment costs, i.e., a more accurate condition monitoring information requires a more sophisticated inspection, hence a higher cost. While numerous works in the literature have considered problems related to condition monitoring quality, (e.g., imperfect inspection models, detection and localization techniques, etc.) few of them focus on adjusting condition monitoring quality for condition-based maintenance optimization. In this paper, we investigate how such an adjustment can help to reduce the total cost of a condition-based maintenance program. The condition monitoring quality is characterized by the observation noises on the system degradation level returned by an inspection. A dynamic condition-based maintenance and inspection policy adapted to such a observation information is proposed and formulated based on Partially Observable Markov Decision Processes. The use and advantages of the proposed joint inspection and maintenance model are numerically discussed and compared to several inspection-maintenance policies through numerical examples

    Development of blood transfusion external quality assessment program at national scale

    Get PDF
    Introduction: External quality assessment is a crucial component in ensuring the quality of blood transfusion testing laboratories. Objectives: To develop a procedure for generating external quality assessment items for blood transfusion testing to evaluate participants' performance. Methods: Experimental research was conducted at Quality Control Center for Medical laboratory- University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam. Three items, including red blood cell, serum, and atypical antibody serum samples, were assessed for homogeneity and stability; 5 assessment areas, including ABO grouping, Rh grouping, compatible cross matches, Coombs test, and screening of atypical antibodies, were utilized to evaluate the performance of 38 participants in the 2020-2021 period. Results: Red blood cell and serum samples maintained quality for a specific period at controlled temperatures, while serum samples with atypical antibodies showed stability at different temperatures. The participants demonstrated high satisfactory performance in ABO grouping, Rh grouping, Coombs test, and screening for atypical antibodies. However, the most unsatisfactory performance was reported in crossmatching, with 15% of participants unsatisfactory results. Conclusion: The procedure of production of proficiency testing items has been successfully developed, and its application at the national level is suggested to improve the quality of blood transfusion laboratories

    In-Channel-Grown Polypyrrole Nanowire for the Detection of DNA Hybridization in an Electrochemical Microfluidic Biosensor

    Get PDF
    A triple electrode setup with a Pt pseudo-reference electrode integrated in a polydimethylsiloxane- (PDMS-) based microchamber was designed and fabricated. The integrated electrodes were deposited onto SiO2/Si substrate by sputtering. The PDMS microchamber was patterned using an SU-8 mold and sealed with electrodes in oxygen plasma. Polypyrrole nanowires (PPy NWs) were electrochemically grown in situ at an accurate position of the working electrode in the sealed microchamber instead of in an open system. The DNA probe sequences were simply introduced into the channel to form bonds with the nanowires. A detection limit of 20 pM was achieved using a lock-in amplifier. The electrochemical characteristics produced by the hybridization of DNA strands in the microchamber showed a good signal/noise ratio and high sensitivity. Measurement of the DNA sensor in narrow space also required much less volume of the analytical sample compared with that in an open measuring cell. Results showed that this simple system can potentially fabricate nanostructures and detect bio/chemical molecules in a sealed system

    Primary and secondary somatic embryogenesis in Jatropha curcas L. From leaf transverse thin cell layers

    Get PDF
    An efficient method for plant regeneration in Jatropha curcas L. via primary and secondary somatic embryogenesis culture from ex vitro leaves of 6-month-old plants was presented in this study. Leaves were cut into transverse thin cell layers (tTCLs) and cultured on MS medium supplemented with kinetin (KIN) at 0.5, 1.0, 1.5, and 2.0 mg/l in combination with indole-3-butyric acid (IBA) at 0.1, 0.5, and 1.0 mg/l or 2,4-dichlorophenoxyacetic acid (2,4-D) at 1.0, 1.5 and 2.0 mg/l . The highest embryogenic callus formation rate (89.3%) was obtained on medium supplemented with 1.0 mg/l KIN and 1.5 mg/l 2,4-D. The calli were selected for the study of primary somatic embryogenesis on MS medium containing 2,4-D (0.01, 0.03, 0.05, and 0.07 mg/l) or KIN (0.5, 1.0, 1.5, and 2.0 mg/l). The highest primary somatic embryos formation rate (76.67%) was achieved on MS medium supplemented with 1.0 mg/l KIN. The primary embryos were cultured on medium supplemented with KIN (0.1, 0.5, 1.0, 1.5, and 2.0 mg/l) combined with 0.2 mg/l indole-3-butyric acid (IBA) or 0.05 mg/l 2,4-D. The combination of 1.5 mg/l KIN and 0.05 mg/l 2,4-D was suitable for secondary embryos formation. Embryos proliferated rapidly, and the highest number of secondary embryos (77.5 embryos) wasobtained from a single primary embryos inoculated. Results also showed that the addition of proline (0.75 g/l) or spermidine (0.15 mM) to the culture medium increased the number of secondary embryos considerably. The fully developed plantlets exhibiting healthy roots and shoots were obtained when somatic embryos were sub-cultured onto B5 medium containing 1.5 mg/l IBA

    Multifunctional nanocarriers of Fe3O4@PLA-PEG/curcumin for MRI, magnetic hyperthermia and drug delivery

    Get PDF
    Background: Despite medicinal advances, cancer is still a big problem requiring better diagnostic and treatment tools. Magnetic nanoparticle (MNP)-based nanosystems for multiple-purpose applications were developed for these unmet needs. Methods: This study fabricated novel trifunctional MNPs of Fe3O4@PLA-PEG for drug release, MRI and magnetic fluid hyperthermia. Result: The MNPs provided a significant loading of curcumin (∼11%) with controllable release ability, a high specific absorption rate of 82.2 W/g and significantly increased transverse relaxivity (r2 = 364.75 mM-1 s-1). The in vivo study confirmed that the MNPs enhanced MRI contrast in tumor observation and low-field magnetic fluid hyperthermia could effectively reduce the tumor size in mice bearing sarcoma 180. Conclusion: The nanocarrier has potential for drug release, cancer treatment monitoring and therapy.The authors are grateful for the financial support by AOARD under award FA2386-17-1-4042. The Spanish government is acknowledged for the “Nanotechnology in translational hyperthermia (HIPERNANO)” research network (RED2018102626-T) and for funding under the project number MAT2017-83631-C3. NTK Thanh thanks EPSRC (EP/M015157/1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed

    Electrosynthesis of a poly(1,5-diaminonaphthalene) - polypyrrole nanowire bilayer for trichlorfon insecticide biosensing

    Get PDF
    In this study, an acetylcholinesterase enzyme biosensor was developed based on a bilayer of poly(1,5-diaminonaphthalene) and polypyrrole nanowire structures modifying carbon screen-printed electrodes (SPEs). A polypyrrole nanowire inner layer was electrodeposited on the surface of SPEs to enhance conductivity and specific areas. A poly(1,5-diaminonaphthalene) outer layer was used for immobilizing acetylcholinesterase through glutaraldehyde agent. On the basis of the inhibition of organophosphate pesticides on the enzymatic activity of acetylcholinesterase enzyme, the acetylcholinesterase-immobilized bilayer of the conductive polymer electrode was designed for electrochemical determination of trichlorfon insecticide, one of the popular organophosphate pesticides. Keywords. Acetylcholinesterase, biosensors, poly(1,5-diaminonaphthalene), polypyrrole nanowire, trichlorfon
    corecore