526 research outputs found

    SiamAF: Learning Shared Information from ECG and PPG Signals for Robust Atrial Fibrillation Detection

    Full text link
    Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. It is associated with an increased risk of stroke, heart failure, and other cardiovascular complications, but can be clinically silent. Passive AF monitoring with wearables may help reduce adverse clinical outcomes related to AF. Detecting AF in noisy wearable data poses a significant challenge, leading to the emergence of various deep learning techniques. Previous deep learning models learn from a single modality, either electrocardiogram (ECG) or photoplethysmography (PPG) signals. However, deep learning models often struggle to learn generalizable features and rely on features that are more susceptible to corruption from noise, leading to sub-optimal performances in certain scenarios, especially with low-quality signals. Given the increasing availability of ECG and PPG signal pairs from wearables and bedside monitors, we propose a new approach, SiamAF, leveraging a novel Siamese network architecture and joint learning loss function to learn shared information from both ECG and PPG signals. At inference time, the proposed model is able to predict AF from either PPG or ECG and outperforms baseline methods on three external test sets. It learns medically relevant features as a result of our novel architecture design. The proposed model also achieves comparable performance to traditional learning regimes while requiring much fewer training labels, providing a potential approach to reduce future reliance on manual labeling

    A Schr\"odinger Equation for Evolutionary Dynamics

    Get PDF
    We establish an analogy between the Fokker-Planck equation describing evolutionary landscape dynamics and the Schr\"{o}dinger equation which characterizes quantum mechanical particles, showing how a population with multiple genetic traits evolves analogously to a wavefunction under a multi-dimensional energy potential in imaginary time. Furthermore, we discover within this analogy that the stationary population distribution on the landscape corresponds exactly to the ground-state wavefunction. This mathematical equivalence grants entry to a wide range of analytical tools developed by the quantum mechanics community, such as the Rayleigh-Ritz variational method and the Rayleigh-Schr\"{o}dinger perturbation theory, allowing us to not only make reasonable quantitative assessments but also explore fundamental biological inquiries. We demonstrate the effectiveness of these tools by estimating the population success on landscapes where precise answers are elusive, and unveiling the ecological consequences of stress-induced mutagenesis -- a prevalent evolutionary mechanism in pathogenic and neoplastic systems. We show that, even in a unchanging environment, a sharp mutational burst resulting from stress can always be advantageous, while a gradual increase only enhances population size when the number of relevant evolving traits is limited. Our interdisciplinary approach offers novel insights, opening up new avenues for deeper understanding and predictive capability regarding the complex dynamics of evolving populations

    Integrating monitor alarms with laboratory test results to enhance patient deterioration prediction

    Get PDF
    AbstractPatient monitors in modern hospitals have become ubiquitous but they generate an excessive number of false alarms causing alarm fatigue. Our previous work showed that combinations of frequently co-occurring monitor alarms, called SuperAlarm patterns, were capable of predicting in-hospital code blue events at a lower alarm frequency. In the present study, we extend the conceptual domain of a SuperAlarm to incorporate laboratory test results along with monitor alarms so as to build an integrated data set to mine SuperAlarm patterns. We propose two approaches to integrate monitor alarms with laboratory test results and use a maximal frequent itemsets mining algorithm to find SuperAlarm patterns. Under an acceptable false positive rate FPRmax, optimal parameters including the minimum support threshold and the length of time window for the algorithm to find the combinations of monitor alarms and laboratory test results are determined based on a 10-fold cross-validation set. SuperAlarm candidates are generated under these optimal parameters. The final SuperAlarm patterns are obtained by further removing the candidates with false positive rate>FPRmax. The performance of SuperAlarm patterns are assessed using an independent test data set. First, we calculate the sensitivity with respect to prediction window and the sensitivity with respect to lead time. Second, we calculate the false SuperAlarm ratio (ratio of the hourly number of SuperAlarm triggers for control patients to that of the monitor alarms, or that of regular monitor alarms plus laboratory test results if the SuperAlarm patterns contain laboratory test results) and the work-up to detection ratio, WDR (ratio of the number of patients triggering any SuperAlarm patterns to that of code blue patients triggering any SuperAlarm patterns). The experiment results demonstrate that when varying FPRmax between 0.02 and 0.15, the SuperAlarm patterns composed of monitor alarms along with the last two laboratory test results are triggered at least once for [56.7–93.3%] of code blue patients within an 1-h prediction window before code blue events and for [43.3–90.0%] of code blue patients at least 1-h ahead of code blue events. However, the hourly number of these SuperAlarm patterns occurring in control patients is only [2.0–14.8%] of that of regular monitor alarms with WDR varying between 2.1 and 6.5 in a 12-h window. For a given FPRmax threshold, the SuperAlarm set generated from the integrated data set has higher sensitivity and lower WDR than the SuperAlarm set generated from the regular monitor alarm data set. In addition, the McNemar’s test also shows that the performance of the SuperAlarm set from the integrated data set is significantly different from that of the SuperAlarm set from the regular monitor alarm data set. We therefore conclude that the SuperAlarm patterns generated from the integrated data set are better at predicting code blue events

    Thoracic Epidural Anesthesia Can Be Effective for the Short‐Term Management of Ventricular Tachycardia Storm

    Get PDF
    Background Novel therapies aimed at modulating the autonomic nervous system, including thoracic epidural anesthesia (TEA), have been shown in small case series to be beneficial in treating medically refractory ventricular tachycardia (VT) storm. However, it is not clear when these options should be considered. We reviewed a multicenter experience with TEA in the management of VT storm to determine its optimal therapeutic use.Methods and Results Data for 11 patients in whom TEA was instituted for VT storm between July 2005 and March 2016 were reviewed to determine the clinical characteristics, outcomes, and role in management. The clinical presentation was incessant VT in 7 (64%), with polymorphic VT in 3 (27%) and monomorphic VT in 8 (73%). The underlying conditions were nonischemic cardiomyopathy in 5 (45%), ischemic cardiomyopathy in 3 (27%), and hypertrophic cardiomyopathy, Brugada syndrome, and cardiac lipoma in 1 (9%) each. Five (45%) had a complete and 1 (9%) had a partial response to TEA; 4 of the complete responders had incessant VT. All 4 patients with a documented response to deep sedation demonstrated a complete response to TEA.Conclusions More than half of the patients with VT storm in our series responded to TEA. TEA may be effective and should be considered as a therapeutic option in patients with VT storm, especially incessant VT, who are refractory to initial management. Improvement in VT burden with deep sedation may suggest that sympathoexcitation plays a key role in perpetuating VT and predict a positive response to TEA

    Analytical study of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by a spatially power-law potential Vper(x) = λxα

    Get PDF
    In this work, we present a rigorous mathematical scheme for the derivation of the sth-order perturbative corrections to the solution to a one-dimensional harmonic oscillator perturbed by the potential V-per(x) = lambda x(alpha), where alpha is a positive integer, using the non-degenerate time-independent perturbation theory. To do so, we derive a generalized formula for the integral I = integral(+infinity)(-infinity)x(alpha)exp(-x(2))H-n(x)H-m(x)d(x), where H-n(x) denotes the Hermite polynomial of degree n, using the generating function of orthogonal polynomials. Finally, the analytical results with alpha = 3 and alpha = 4 are discussed in detail and compared with the numerical calculations obtained by the Lagrange-mesh method

    Urbanization and seasonality strengthens the CO2 capacity of the Red River Delta, Vietnam

    Get PDF
    Tropical rivers are dynamic CO2 sources. Regional patterns in the partial pressure of CO2 (pCO2) and relationships with other a/biotic factors in densely populated and rapidly developing river delta regions of Southeast Asia are still poorly constrained. Over one year, at 21 sites across the river system in the Red River Delta (RRD), Vietnam, we calculated pCO2 levels from temperature, pH, and total alkalinity and inter-linkages between pCO2 and phytoplankton, water chemistry and seasonality were then assessed. The smaller, more urbanized, and polluted Day River had an annual median pCO2 of 5000 ± 3300 ”atm and the larger Red River of 2675 ± 2271 ”atm. pCO2 was 1.6 and 3.2 times higher during the dry season in the Day and Red rivers respectively than the rainy season. Elevated pCO2 levels in the Day River during the dry season were also 2.4-fold higher than the median value (2811 ±  3577 ”atm) of calculated and direct pCO2 measurements in >20 sub/tropical rivers. By further categorizing the river data into Hanoi City vs. other less urban-populated provinces, we found significantly higher nutrients, organic matter content, and riverine cyanobacteria during the dry season in the Day River across Hanoi City. Forward selection also identified riverine cyanobacteria and river discharge as the main predictors explaining pCO2 variation in the RRD. After accounting for the shared effects (14%), river discharge alone significantly explained 12% of the pCO2 variation, cyanobacteria uniquely a further 21%, while 53% of the pCO2 variance was unexplained by either. We show that the urbanization of rivers deltas could result in increased sources of riverine pCO2, water pollution, and harmful cyanobacterial blooms
    • 

    corecore