4,277 research outputs found

    Brain-Computer Interface Controlled Functional Electrical Stimulation System for Ankle Movement

    Get PDF
    Abstract Background Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. Methods A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Results Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. Conclusions This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries

    The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw

    Get PDF
    Difficulties in the production of lignin from rice straw because of high silica content in the recovered lignin reduce its recovery yield and applications as bio-fuel and aromatic chemicals. Therefore, the objective of this study is to develop a novel method to reduce the silica content in lignin from rice straw more effectively and selectively. The method is established by monitoring the precipitation behavior as well as the chemical structure of precipitate by single-stage acidification at different pH values of black liquor collected from the alkaline treatment of rice straw. The result illustrates the significant influence of pH on the physical and chemical properties of the precipitate and the supernatant. The simple two-step acidification of the black liquor at pilot-scale by sulfuric acid 20w/v% is applied to recover lignin at pH 9 and pH 3 and gives a percentage of silica removal as high as 94.38%. Following the developed process, the high-quality lignin could be produced from abundant rice straw at the industrial-scale

    Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    Get PDF
    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients

    Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE) -- A novel ICA-based algorithm for removing myoelectric artifacts from EEG -- Part 2

    Full text link
    Extraction of the movement-related high-gamma (80 - 160 Hz) in electroencephalogram (EEG) from traumatic brain injury (TBI) patients who have had hemicraniectomies, remains challenging due to a confounding bandwidth overlap with surface electromyogram (EMG) artifacts related to facial and head movements. In part 1, we described an augmented independent component analysis (ICA) approach for removal of EMG artifacts from EEG, and referred to as EMG Reduction by Adding Sources of EMG (ERASE). Here, we tested ERASE on EEG recorded from six TBI patients with hemicraniectomies while they performed a thumb flexion task. ERASE removed a mean of 52 +/- 12% (mean +/- S.E.M) (maximum 73%) of EMG artifacts. In contrast, conventional ICA removed a mean of 27 +/- 19\% (mean +/- S.E.M) of EMG artifacts from EEG. In particular, high-gamma synchronization was significantly improved in the contralateral hand motor cortex area within the hemicraniectomy site after ERASE was applied. We computed fractal dimension (FD) of EEG high-gamma on each channel. We found relative FD of high-gamma over hemicraniectomy after applying ERASE were strongly correlated to the amplitude of finger flexion force. Results showed that significant correlation coefficients across the electrodes related to thumb flexion averaged 0.76, while the coefficients across the homologous electrodes in non-hemicraniectomy areas were nearly 0. Across all subjects, an average of 83% of electrodes significantly correlated with force was located in the hemicraniectomy areas after applying ERASE. After conventional ICA, only 19% of electrodes with significant correlations were located in the hemicraniectomy. These results indicated that the new approach isolated electrophysiological features during finger motor activation while selectively removing confounding EMG artifacts

    Group-based trajectories of maternal intake of sugar-sweetened beverage and offspring oral health from a prospective birth cohort study

    Get PDF
    OBJECTIVES: To investigate the trajectory of maternal intake of sugar-sweetened beverages (SSB) during the first five years of their child's life and its effect on the child's dental caries at five years-of-age. METHODS: This is an ongoing prospective population-based birth cohort study in Adelaide, Australia. Mothers completed questionnaires on their SSB intake, socioeconomic factors and health behaviors at the birth of their child and at the ages of one, two and five years. Child dental caries measured as decayed, missing, or filled tooth surfaces was collected by oral examination. Maternal SSB intake was used to estimate the trajectory of SSB intake. The trajectories then became the main exposure of the study. Dental caries at age five years were the primary outcomes. Adjusted mean- and prevalence-ratios were estimated for dental caries, controlling for confounders. RESULTS: 879 children had dental examinations at five years-of-age. Group-based trajectory modeling identified three trajectories of maternal SSB intake: 'Stable low' (40.8%), 'Moderate but increasing' (13.6%), and 'High early' trajectory (45.6%). Multivariable regression analysis found children of mothers in the 'High early' and 'Moderate but increasing' groups to have greater experience of dental caries (MR: 1.37 (95%CI 1.01-1.67), and 1.24 (95%CI 0.96-1.60) than those in the 'Stable low' trajectory, respectively. CONCLUSION: Maternal consumption of SSB during pregnancy and in the early postnatal period influenced their offspring's oral health. It is important to create a low-sugar environment from early childhood. The results suggest that health promotion activities need to be delivered to expecting women or soon after childbirth
    corecore