66 research outputs found

    Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores

    Get PDF
    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V center dot s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanop ores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate

    Write-read 3D patterning with a dual-channel nanopipette

    Get PDF
    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to architect and build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30−50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillars, zigzag and Γ-like structures, as well as permitting the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high resolution 3D “printing” (writing) and read-out at the nanoscale

    Characterization of nanopipettes

    Get PDF
    Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy (TEM) and finite element method (FEM) simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for nanopipette characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope (SICM) setup

    Frontiers in nanoscale electrochemical imaging : faster, multifunctional and ultrasensitive

    Get PDF
    A wide range of interfacial physicochemical processes, from electrochemistry to the functioning of living cells involve spatially localized chemical fluxes that are associated with specific features of the interface. Scanning electrochemical probe microscopes (SEPMs) represent a powerful means of visualizing interfacial fluxes, and this Feature Article highlights recent developments that have radically advanced the speed, spatial resolution, functionality and sensitivity of SEPMs. A major trend has been a coming together of SEPMs that developed independently, and the use of established SEPMs in completely new ways, greatly expanding their scope and impact. The focus is on nanopipette-based SEPMs, including scanning ion conductance microscopy (SICM), scanning electrochemical cell microscopy (SECCM), and hybrid techniques thereof, particularly with scanning electrochemical microscopy (SECM). Nanopipette-based probes are made easily, quickly and cheaply with tunable characteristics. They are reproducible and can be fully characterized, and their reponse can be modeled in considerable detail, so that quantitative maps of chemical fluxes and other properties (e.g. local charge) can be obtained and analyzed. This article provides an overview on the use of these probes for high speed imaging, to create movies of electrochemical processes in action, to carry out multifunctional mapping, such as simultaneous topography-charge and topography-activity, and to create nanoscale electrochemical cells for the detection, trapping and analysis of single entities, particularly individual molecules and nanoparticles (NPs). These studies provide a platform for the further application and diversification of SEPMs across a wide range of interfacial science

    Differential capacitance of liquid/liquid interfaces of finite thicknesses: a finite element study

    Get PDF
    Finite element simulations were used to investigate the effect of a smooth variation of permittivity across a polarized liquid/liquid interface on the differential capacitance. The results show that a relative permittivity profile can account for the variation of ion solvation in the interfacial region, and therefore upon the diffuse double layer itself. The width and the symmetry of this profile across the interface are shown to be crucial parameters for interfacial distributions and fitting of capacitance data has been used to estimate the width of the interfacial region

    Simultaneous interfacial reactivity and topography mapping with scanning ion conductance microscopy

    Get PDF
    Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing

    Aptamer Conformational Dynamics Modulate Neurotransmitter Sensing in Nanopores

    Get PDF
    : Aptamers that undergo conformational changes upon small-molecule recognition have been shown to gate the ionic flux through nanopores by rearranging the charge density within the aptamer-occluded orifice. However, mechanistic insight into such systems where biomolecular interactions are confined in nanoscale spaces is limited. To understand the fundamental mechanisms that facilitate the detection of small-molecule analytes inside structure-switching aptamer-modified nanopores, we correlated experimental observations to theoretical models. We developed a dopamine aptamer-functionalized nanopore sensor with femtomolar detection limits and compared the sensing behavior with that of a serotonin sensor fabricated with the same methodology. When these two neurotransmitters with comparable mass and equal charge were detected, the sensors showed an opposite electronic behavior. This distinctive phenomenon was extensively studied using complementary experimental techniques such as quartz crystal microbalance with dissipation monitoring, in combination with theoretical assessment by the finite element method and molecular dynamic simulations. Taken together, our studies demonstrate that the sensing behavior of aptamer-modified nanopores in detecting specific small-molecule analytes correlates with the structure-switching mechanisms of individual aptamers. We believe that such investigations not only improve our understanding of the complex interactions occurring in confined nanoscale environments but will also drive further innovations in biomimetic nanopore technologies

    High-speed electrochemical imaging

    Get PDF
    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels ÎŒm–2) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques

    Segmented Field OFFGELÂź Electrophoresis

    Get PDF
    A multielectrode setup for protein OFFGEL electrophoresis that significantly improves protein separation efficiency has been developed. Here, the electric field is applied by segments between seven electrodes connected in series to six independent power supplies. The aim of this strategy is to distribute evenly the electric field along the multiwell system, and as a consequence to enhance electrophoresis in terms of separation time, resolution, and protein collection efficiency, while minimizing the overall potential difference and therefore the Joule heating. The performances were compared to a standard two-electrode setup for OFFGEL fractionation of a protein mixture, using UV-Vis spectroscopy for quantification and MALDI-MS for identification. The electrophoretic separation process was simulated, and optimized by solving the time-dependent Nernst–Planck differential equation
    • 

    corecore