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SI-1. Simulation details 

The numerical modelling was performed by solving coupled Nernst-Planck and Poisson equations 

within a one dimensional computational domain using "Nernst-Planck without electroneutrality" and 

"Poisson equation" modes from COMSOL Multiphysics (version 3.5a). The computational domain was 

divided into two subdomains, representing aqueous and organic phases respectively. A set of Nernst-

Planck equations were established in each subdomain in such way that ions could not permeate through 

liquid/liquid boundary. The value of relative permittivity given by sigmoidal function was specified in 

the Poisson equation application mode that was set over the whole computational domain. The 

numerical resolution of equations system was performed in a parametric way using direct solver 

UMFPACK taking the bias value V0 as a parameter. The mesh size was refined down to 10
-14

 m which 

is sufficient enough to avoid inaccuracy attributed to the mesh size. All the constant values, expressions, 

mesh details subdomain and boundary conditions used in simulations are shown in the COMSOL report 

file. It is also important to note that values of diffusion coefficients of corresponding ionic species have 

no influence on the numerical result. 

SI-2. Gouy-Chapman capacitance and model validation. 

The classical formulation of Gouy-Chapman case for ITIES assume the bulk values of relative 

permittivity in each phase, i.e. neglecting smooth change of solvent properties at the interphase. 

Therefore, the bulk values of relative permittivity were set for each corresponding subdomain and the 

differential capacitance was evaluated as follows 

C
d

= ±
¶s

¶(fs -f¥)
 

while calculating surface charge density at the interface as the subdomain integral of space charge 

density, i.e.  

s = F zici
i

åò  
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Figure S-1 shows the very good correlation between numerical and analytical result for the calculated 

Gouy-Chapman capacitance at ITIES 

 

Figure S-1. Differential capacitance curves at the water/DCE interface containing 1:1 electrolyte at bulk concentration of 1 
mM calculated within frameworks of Gouy-Chapman theory. Numerical and analytical results are represented as dots and 
continious red line, respectively. 

SI-3. Nernst-Planck formulation taking into account ion solvation effect 

The flux of species i could be written as 

Ji = -
Di

RT
ciÑmi  

where i denote the chemical potential of species i and, considering activity of the ion to be equal to 

concentration like in case of infinite dilution, could be considered as follows 

mi = mi
0 + RT lnci + ziFf  

Therefore, the flux equation reads 

Ji = -
Di

RT
ciÑmi

0 - DiÑci +
ziF

RT
DiciÑf
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The term in squared brackets is the normal form of Nernst-Planck equation describing ionic flux arising 

from diffusion and migration transport processes. At the same time, taking into account ion solvation in 

accordance with Born theory we can write 

mi
0 =

zi
2e2Na

8pe0rion
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where e, Na and rion denote elementary charge, Avogadro constant and ionic radius, respectively. 

Therefore, the flux equation reads 

Ji =
Di

RT
ci
zi

2e2Na

8pe0rion
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In Nernst-Planck application mode the equations system for each subdomain is formulated as 

Ñ -DiÑci -
ziF

RT
DiciÑf
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= R - uÑci  

In such a way we can define R and u terms by differentiating first solvation term in the flux equation. 

Hence, the total formulation could be rewritten 

Ñ -DiÑci -
ziF

RT
DiciÑf
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However, the contribution to the total flux from the ion-solvation effect remains minor and therefore do 

not change significantly the capacitive behavior of ITIES. 
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