5 research outputs found
Metamaterial Polarization Converter Analysis: Limits of Performance
In this paper we analyze the theoretical limits of a metamaterial converter
that allows for linear-to- elliptical polarization transformation with any
desired ellipticity and ellipse orientation. We employ the transmission line
approach providing a needed level of the design generalization. Our analysis
reveals that the maximal conversion efficiency for transmission through a
single metamaterial layer is 50%, while the realistic re ection configuration
can give the conversion efficiency up to 90%. We show that a double layer
transmission converter and a single layer with a ground plane can have 100%
polarization conversion efficiency. We tested our conclusions numerically
reaching the designated limits of efficiency using a simple metamaterial
design. Our general analysis provides useful guidelines for the metamaterial
polarization converter design for virtually any frequency range of the
electromagnetic waves.Comment: 10 pages, 11 figures, 2 table
Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
Magnetic and Electric Hotspots with Silicon Nanodimers
The study of the resonant behavior
of silicon nanostructures provides a new route for achieving efficient
control of both electric and magnetic components of light. We demonstrate
experimentally and numerically that enhancement of localized electric
and magnetic fields can be achieved in a silicon nanodimer. For the
first time, we experimentally observe hotspots of the magnetic field
at visible wavelengths for light polarized across the nanodimer’s
primary axis, using near-field scanning optical microscopy
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design