2 research outputs found

    Microarray Profiling of Vaccination-Induced Antibody Responses to SARS-CoV-2 Variants of Interest and Concern

    No full text
    Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs

    36-month clinical outcomes of patients with venous thromboembolism: GARFIELD-VTE

    Get PDF
    Background: Venous thromboembolism (VTE), encompassing both deep vein thrombosis (DVT) and pulmonary embolism (PE), is a leading cause of morbidity and mortality worldwide.Methods: GARFIELD-VTE is a prospective, non-interventional observational study of real-world treatment practices. We aimed to capture the 36-month clinical outcomes of 10,679 patients with objectively confirmed VTE enrolled between May 2014 and January 2017 from 415 sites in 28 countries.Findings: A total of 6582 (61.6 %) patients had DVT alone, 4097 (38.4 %) had PE +/- DVT. At baseline, 98.1 % of patients received anticoagulation (AC) with or without other modalities of therapy. The proportion of patients on AC therapy decreased over time: 87.6 % at 3 months, 73.0 % at 6 months, 54.2 % at 12 months and 42.0 % at 36 months. At 12-months follow-up, the incidences (95 % confidence interval [CI]) of all-cause mortality, recurrent VTE and major bleeding were 6.5 (7.0-8.1), 5.4 (4.9-5.9) and 2.7 (2.4-3.0) per 100 person-years, respectively. At 36-months, these decreased to 4.4 (4.2-4.7), 3.5 (3.2-2.7) and 1.4 (1.3-1.6) per 100 person-years, respectively. Over 36-months, the rate of all-cause mortality and major bleeds were highest in patients treated with parenteral therapy (PAR) versus oral anti-coagulants (OAC) and no OAC, and the rate of recurrent VTE was highest in patients on no OAC versus those on PAR and OAC. The most frequent cause of death after 36-month follow-up was cancer (n = 565, 48.6 %), followed by cardiac (n = 94, 8.1 %), and VTE (n = 38, 3.2 %). Most recurrent VTE events were DVT alone (n = 564, 63.3 %), with the remainder PE, (n = 236, 27.3 %), or PE in combination with DVT (n = 63, 7.3 %).Interpretation: GARFIELD-VTE provides a global perspective of anticoagulation patterns and highlights the accumulation of events within the first 12 months after diagnosis. These findings may help identify treatment gaps for subsequent interventions to improve patient outcomes in this patient population
    corecore