11 research outputs found

    A Solvent Model for Simulations of Peptides in Bilayers. I. Membrane-Promoting α-Helix Formation

    Get PDF
    AbstractWe describe an efficient solvation model for proteins. In this model atomic solvation parameters imitating the hydrocarbon core of a membrane, water, and weak polar solvent (octanol) were developed. An optimal number of solvation parameters was chosen based on analysis of atomic hydrophobicities and fitting experimental free energies of gas-cyclohexane, gas-water, and octanol-water transfer for amino acids. The solvation energy term incorporated into the ECEPP/2 potential energy function was tested in Monte Carlo simulations of a number of small peptides with known energies of bilayer-water and octanol-water transfer. The calculated properties were shown to agree reasonably well with the experimental data. Furthermore, the solvation model was used to assess membrane-promoting α-helix formation. To accomplish this, all-atom models of 20-residue homopolypeptides—poly-Leu, poly-Val, poly-Ile, and poly-Gly in initial random coil conformation—were subjected to nonrestrained Monte Carlo conformational search in vacuo and with the solvation terms mimicking the water and hydrophobic parts of the bilayer. All the peptides demonstrated their largest helix-forming tendencies in a nonpolar environment, where the lowest-energy conformers of poly-Leu, Val, Ile revealed 100, 95, and 80% of α-helical content, respectively. Energetic and conformational properties of Gly in all environments were shown to be different from those observed for residues with hydrophobic side chains. Applications of the solvation model to simulations of peptides and proteins in the presence of membrane, along with limitations of the approach, are discussed

    A Solvent Model for Simulations of Peptides in Bilayers. II. Membrane-Spanning α-Helices

    Get PDF
    AbstractWe describe application of the implicit solvation model (see the first paper of this series), to Monte Carlo simulations of several peptides in bilayer- and water-mimetic environments, and in vacuum. The membrane-bound peptides chosen were transmembrane segments A and B of bacteriorhodopsin, the hydrophobic segment of surfactant lipoprotein, and magainin2. Their conformations in membrane-like media are known from the experiments. Also, molecular dynamics study of surfactant lipoprotein with different explicit solvents has been reported (Kovacs, H., A. E. Mark, J. Johansson, and W. F. van Gunsteren. 1995. J. Mol. Biol. 247:808–822). The principal goal of this work is to compare the results obtained in the framework of our solvation model with available experimental and computational data. The findings could be summarized as follows: 1) structural and energetic properties of studied molecules strongly depend on the solvent; membrane-mimetic media significantly promote formation of α-helices capable of traversing the bilayer, whereas a polar environment destabilizes α-helical conformation via reduction of solvent-exposed surface area and packing; 2) the structures calculated in a membrane-like environment agree with the experimental ones; 3) noticeable differences in conformation of surfactant lipoprotein assessed via Monte Carlo simulation with implicit solvent (this work) and molecular dynamics in explicit solvent were observed; 4) in vacuo simulations do not correctly reproduce protein-membrane interactions, and hence should be avoided in modeling membrane proteins

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    Interaction of cardiotoxins with membranes: a molecular modeling study.

    Get PDF
    Incorporation of beta-sheet proteins into membrane is studied theoretically for the first time, and the results are validated by the direct experimental data. Using Monte Carlo simulations with implicit membrane, we explore spatial structure, energetics, polarity, and mode of insertion of two cardiotoxins with different membrane-destabilizing activity. Both proteins, classified as P- and S-type cardiotoxins, are found to retain the overall "three-finger" fold interacting with membrane core and lipid/water interface by the tips of the "fingers" (loops). The insertion critically depends upon the structure, hydrophobicity, and electrostatics of certain regions. The simulations reveal apparently distinct binding modes for S- and P-type cardiotoxins via the first loop or through all three loops, respectively. This rationalizes an earlier empirical classification of cardiotoxins into S- and P-type, and provides a basis for the analysis of experimental data on their membrane affinities. Accomplished with our previous simulations of membrane alpha-helices, the computational method may be used to study partitioning of proteins with diverse folds into lipid bilayers

    Characterization of the Corynebacterium glutamicum dehydroshikimate dehydratase QsuB and its potential for microbial production of protocatechuic acid.

    No full text
    The dehydroshikimate dehydratase (DSD) from Corynebacterium glutamicum encoded by the qsuB gene is related to the previously described QuiC1 protein (39.9% identity) from Pseudomonas putida. Both QuiC1 and QsuB are two-domain bacterial DSDs. The N-terminal domain provides dehydratase activity, while the C-terminal domain has sequence identity with 4-hydroxyphenylpyruvate dioxygenase. Here, the QsuB protein and its N-terminal domain (N-QsuB) were expressed in the T7 system, purified and characterized. QsuB was present mainly in octameric form (60%), while N-QsuB had a predominantly monomeric structure (80%) in aqueous buffer. Both proteins possessed DSD activity with one of the following cofactors (listed in the order of decreasing activity): Co2+, Mg2+, Mn2+. The Km and kcat values for the QsuB enzyme (Km ~ 1 mM, kcat ~ 61 s-1) were two and three times higher than those for N-QsuB. 3,4-DHBA inhibited QsuB (Ki ~ 0.38 mM, Ki' ~ 0.96 mM) and N-QsuB (Ki ~ 0.69 mM) enzymes via mixed and noncompetitive inhibition mechanism, respectively. E. coli MG1655ΔaroEPlac‒qsuB strain produced three times more 3,4-DHBA from glucose in test tube fermentation than the MG1655ΔaroEPlac‒n-qsuB strain. The C-terminal domain activity towards 3,4-DHBA was not established in vitro. This domain was proposed to promote protein oligomerization for maintaining structural stability of the enzyme. The dimer formation of QsuB protein was more predictable (ΔG = ‒15.8 kcal/mol) than the dimerization of its truncated version N-QsuB (ΔG = ‒0.4 kcal/mol)
    corecore