6 research outputs found

    Development of the covalent antibody-DNA conjugates technology for detection of IgE and IgM antibodies by immuno-PCR.

    No full text
    Immuno-PCR (iPCR) is one of the methods used for the detection of a wide range of analytes and features the high sensitivity of the polymerase chain reaction (PCR) method. iPCR uses antibodies coupled to DNA, followed by the amplification of the attached DNA using RT-PCR. Two major types of antibody-DNA conjugates are currently used, which are obtained as a result of non-covalent (biotin-streptavidin) or covalent interactions. Using a strain-promoted azide-alkyne cycloaddition (SPAAC), we synthesized covalent DNA-antibody conjugates, optimized the reaction conditions, and developed an efficient protocol for the purification of conjugates, with which all unreacted antibodies and oligonucleotides are separated. Covalent DNA-antibody conjugates were tested with iPCR assays that were previously developed for the detection of IgE and IgM antibodies with the use of the supramolecular complex of 5'- and 3'-biotinylated DNA and streptavidin. The results show that the modification of antibodies with amino groups did not allow us to obtain monolabeled antibodies or antibodies with a strictly defined number of DNA-labels. The degree of labeling determined by the dyes introduced through the azido group reflects the actual labeling degree statistically. If the average labeling degree for azido groups is 1.1, the conjugates contain 25% mono-labeled antibodies, 50% double-labeled antibodies, and 25% unlabeled ones. The specificity of the monoclonal antibody to human IgE (BE5) changed after conjugation with the oligonucleotide. The sensitivity of iPCR in the detection of IgM antibodies produced against the LeC disaccharide using a covalent conjugate was similar to that of a supramolecular complex of 5'- and 3'-biotinylated DNA and streptavidin, but the new procedure is two steps shorter

    CAMK2D De Novo Missense Variant in Patient with Syndromic Neurodevelopmental Disorder: A Case Report

    No full text
    Background: Intellectual disability with developmental delay is the most common developmental disorder. However, this diagnosis is rarely associated with congenital cardiomyopathy. In the current report, we present the case of a patient suffering from dilated cardiomyopathy and developmental delay. Methods: Neurological pathology in a newborn was diagnosed immediately after birth, and the acquisition of psychomotor skills lagged behind by 3–4 months during the first year of life. WES analysis of the proband did not reveal a causal variant, so the search was extended to trio. Results: Trio sequencing revealed a de novo missense variant in the CAMK2D gene (p.Arg275His), that is, according to the OMIM database and available literature, not currently associated with any specific inborn disease. The expression of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) protein is known to be increased in the heart tissues from patients with dilated cardiomyopathy. The functional effect of the CaMKIIδ Arg275His mutant was recently reported; however, no specific mechanism of its pathogenicity was proposed. A structural analysis and comparison of available three-dimensional structures of CaMKIIδ confirmed the probable pathogenicity of the observed missense variant. Conclusions: We suggest that the CaMKIIδ Arg275His variant is highly likely the cause of dilated cardiomyopathy and neurodevelopmental disorders

    De Novo Variant in the <i>KCNJ9</i> Gene as a Possible Cause of Neonatal Seizures

    No full text
    Background: The reduction in next-generation sequencing (NGS) costs allows for using this method for newborn screening for monogenic diseases (MDs). In this report, we describe a clinical case of a newborn participating in the EXAMEN project (ClinicalTrials.gov Identifier: NCT05325749). Methods: The child presented with convulsive syndrome on the third day of life. Generalized convulsive seizures were accompanied by electroencephalographic patterns corresponding to epileptiform activity. Proband WES expanded to trio sequencing was performed. Results: A differential diagnosis was made between symptomatic (dysmetabolic, structural, infectious) neonatal seizures and benign neonatal seizures. There were no data in favor of the dysmetabolic, structural, or infectious nature of seizures. Molecular karyotyping and whole exome sequencing were not informative. Trio WES revealed a de novo variant in the KCNJ9 gene (1:160087612T > C, p.Phe326Ser, NM_004983), for which, according to the OMIM database, no association with the disease has been described to date. Three-dimensional modeling was used to predict the structure of the KCNJ9 protein using the known structure of its homologs. According to the predictions, Phe326Ser change possibly disrupts the hydrophobic contacts with the valine side chain. Destabilization of the neighboring structures may undermine the formation of GIRK2/GIRK3 tetramers necessary for their proper functioning. Conclusions: We believe that the identified variant may be the cause of the disease in this patient but further studies, including the search for other patients with the KCNJ9 variants, are needed

    X-ray Spectroscopy of Heterocyclic Biochemicals: Xanthine, Hypoxanthine, and Caffeine

    No full text
    The electronic structures of the purine derivatives xanthine, hypoxanthine and caffeine have been investigated in the gas phase using C, N, and O 1s X-ray photoemission (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results have been interpreted by means of ab initio calculations using the third-order algebraic-diagrammatic construction (ADC(3)) method for the one-particle Green’s function and the second-order ADC method (ADC(2)) for the polarization propagator. The carbon, nitrogen and oxygen K-edge NEXAFS spectra of xanthine and caffeine are very similar, since the molecules differ only by substitution of three hydrogen atoms by methyl groups. For hypoxanthine, the electronic structure and spectra differ considerably from xanthine as the purine ring is more highly conjugated, and there is one less oxo group. Effects due to oxo-hydroxy tautomerism were not observed. However, the two oxo tautomeric forms of hypoxanthine oxo-N(9)-H and oxo-N(7)-H are populated in the gas phase, and the C 1s spectra can be simulated only by taking account of these two tautomers, with appropriate Boltzmann population ratios which we have also calculated. For xanthine and caffeine, single tautomeric forms were observed

    Advantages of nuclear fusion with polarized fuel

    No full text
    The use of nuclear polarized fuel, i.e. polarized D, T or 3He, for coming fusion reactors promises to increase their energy output and to optimize the complete fusion process in various ways. But before these advantages can be utilized, several questions must be answered and technical issues must be overcome. Among others, the members of the PREFER collaboration started to investigate the different challenges of 'polarized fusion'
    corecore