11 research outputs found

    Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    Get PDF
    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm

    Effect of working gas pressure on interlayer mixing in magnetron-deposited Mo/Si multilayers

    Get PDF
    By methods of cross-sectional transmission electron microscopy and small-angle x-ray scattering (Ξ» = 0.154 nm) the influence of Ar gas pressure (1 to 4 mTorr) on the growth of amorphous interfaces in Mo/Si multilayers (MLs) deposited by DC magnetron sputtering is studied. The significant reduction in the ML period, which is evident as a volumetric contraction, is observed in MLs deposited at Ar pressure where the mean-free path for the sputtered atoms is comparable with the magnetronsubstrate distance. Some reduction in the thickness of the amorphous interlayers with Ar pressure increase is found, where the composition of the interlayers is enriched with molybdenum. The interface modification resulted in an increase in EUV reflectance of the Mo/Si ML

    High-efficiency 5000 lines/mm multilayer-coated blazed grating for EUV wavelengths

    No full text
    Volume x-ray gratings consisting of a multilayer coating deposited on a blazed substrate can diffract with very high efficiency even in high orders if diffraction conditions in-plane (grating) and out-of-plane (Bragg multilayer) are met simultaneously. This remarkable property however depends critically on the ability to create a structure with near atomic perfection. In this work we report on a method to produce these structures. We report measurements that show, for a 5000 l/mm grating diffracting in the 3rd order, a diffraction efficiency of 37.6percent at a wavelength of 13.6 nm, close to the theoretical maximum. This work now shows a direct route to achieving high diffraction efficiency in high order at wavelengths throughout the soft x-ray energy range

    5000 Groove/mm multilayer-coated blazed grating with 33% efficiency in the 3rd order in the EUV wavelength range

    No full text
    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 10[superscript 5]-10[superscript 6] in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists of a 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33% at an incidence angle of 11Β° and wavelength of 14.18 nm. This work was supported by the US Department of Energy under contract number DE-AC02-05CH11231.United States Department of Energy (contract number DE-AC02-05CH11231
    corecore