90 research outputs found
Two-dimensional manifold with point-like defects
We study a class of two-dimensional compact extra spaces isomorphic to the
sphere in the framework of multidimensional gravitation. We show that
there exists a family of stationary metrics that depend on the initial
(boundary) conditions. All these geometries have a singular point. We also
discuss the possibility for these deformed extra spaces to be considered as
dark matter candidates.Comment: 4 pages, 2 figures; Proceedings of the Conference of Fundamental
Research and Particle Physics, 18-20 February 2015, Moscow, Russian
Federatio
Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation
We obtain exact moving and stationary, spatially periodic and localized
solutions of a generalized discrete nonlinear Schr\"odinger equation. More
specifically, we find two different moving periodic wave solutions and a
localized moving pulse solution. We also address the problem of finding exact
stationary solutions and, for a particular case of the model when stationary
solutions can be expressed through the Jacobi elliptic functions, we present a
two-point map from which all possible stationary solutions can be found.
Numerically we demonstrate the generic stability of the stationary pulse
solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.
The 5′ untranslated region of Apaf-1 mRNA directs translation under apoptosis conditions via a 5′ end-dependent scanning mechanism
AbstractWe have previously shown that translation driven by the 5′ UTR of Apaf-1 mRNA is relatively efficient in the absence of m7G-cap, but no IRES is involved. Nevertheless, it may be speculated that a “silent” IRES is activated under apoptosis conditions. Here, we show that translation of the mRNA with the Apaf-1 5′ UTR is relatively resistant to apoptosis induced by etoposide when eIF4E is sequestered by 4E-BP and eIF4G is partially cleaved. However, translation under these conditions remains governed by 5′ end-dependent scanning. We hypothesize that the observed phenomenon is based on the intrinsic low cap-dependence of the Apaf-1 5′ UTR
Abstract P-22: Enhanced Crosslinking and Immunoprecipitation (Eclip) Data Reveal Interactions of RNA Binding Proteins with the Human Ribosome
Background: The ribosome is a protein-synthesizing molecular machine composed of four ribosomal RNAs (rRNAs) and dozens of ribosomal proteins. In mammals, the ribosome has a complicated structure with an additional outer layer of rRNA, including large tentacle-like extensions. A number of RNA binding proteins (RBPs) interact with this layer to assist ribosome biogenesis, nuclear export and decay, or to modulate translation. Plenty of methods have been developed in the last decade in order to study such protein-RNA interactions, including RNA pulldown and crosslinking-immunoprecipitation (CLIP) assays.
Methods: In the current study, using publicly available data of the enhanced CLIP (eCLIP) experiments for 223 proteins studied in the ENCODE project, we found a number of RBPs that bind rRNAs in human cells. To locate their binding sites in rRNAs, we used a newly developed computational protocol for mapping and evaluation of the eCLIP data with the respect to the repetitive sequences.
Results: For two proteins with known ribosomal localization, uS3/RPS3 and uS17/RPS11, the identified sites were in good agreement with structural data, thus validating our approach. Then, we identified rRNA contacts of overall 22 RBPs involved in rRNA processing and ribosome maturation (DDX21, DDX51, DDX52, NIP7, SBDS, UTP18, UTP3, WDR3, and WDR43), translational control during stress (SERBP1, G3BP1, SND1), IRES activity (PCBP1/hnRNPE1), and other translation-related functions. In many cases, the identified proteins interact with the rRNA expansion segments (ES) of the human ribosome pointing to their important role in protein synthesis.
Conclusion: Our study identifies a number of RBPs as interacting partners of the human ribosome and sheds light on the role of rRNA expansion segments in translation
Insights into the mechanisms of eukaryotic translation gained with ribosome profiling
The development of Ribosome Profiling (RiboSeq) has revolutionized functional genomics. RiboSeq is based on capturing and sequencing of the mRNA fragments enclosed within the translating ribosome and it thereby provides a â snapshotâ of ribosome positions at the transcriptome wide level. Although the method is predominantly used for analysis of differential gene expression and discovery of novel translated ORFs, the RiboSeq data can also be a rich source of information about molecular mechanisms of polypeptide synthesis and translational control. This review will focus on how recent findings made with RiboSeq have revealed important details of the molecular mechanisms of translation in eukaryotes. These include mRNA translation sensitivity to drugs affecting translation initiation and elongation, the roles of upstream ORFs in response to stress, the dynamics of elongation and termination as well as details of intrinsic ribosome behavior on the mRNA after translation termination. As the RiboSeq method is still at a relatively early stage we will also discuss the implications of RiboSeq artifacts on data interpretation
- …