3,381 research outputs found

    SU(2) approach to the pseudogap phase of high-temperature superconductors: electronic spectral functions

    Full text link
    We use an SU(2) mean-field theory approach with input from variational wavefunctions of the t-J model to study the electronic spectra in the pseudogap phase of cuprates. In our model, the high-temperature state of underdoped cuprates is realized by classical fluctuations of the order parameter between the d-wave superconductor and the staggered-flux state. Spectral functions of the intermediate and the averaged states are computed and analyzed. Our model predicts a photoemission spectrum with an asymmetric gap structure interpolating between the superconducting gap centered at the Fermi energy and the asymmetric staggered-flux gap. This asymmetry of the gap changes sign at the point where the Fermi surface crosses the diagonal (\pi,0)-(0,\pi).Comment: 7 pages, 10 figures; estimate of applicable temperature range corrected and refs. added, ref. to ARPES paper added; minor changes to published versio

    A Variational Monte Carlo Study of the Current Carried by a Quasiparticle

    Full text link
    With the use of Gutzwiller-projected variational states, we study the renormalization of the current carried by the quasiparticles in high-temperature superconductors and of the quasiparticle spectral weight. The renormalization coefficients are computed by the variational Monte Carlo technique, under the assumption that quasiparticle excitations may be described by Gutzwiller-projected BCS quasiparticles. We find that the current renormalization coefficient decreases with decreasing doping and tends to zero at zero doping. The quasiparticle spectral weight Z_+ for adding an electron shows an interesting structure in k space, which corresponds to a depression of the occupation number k just outside the Fermi surface. The perturbative corrections to those quantities in the Hubbard model are also discussed.Comment: 9 pages, 9 figure

    Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase

    Get PDF
    Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment

    A teleparallel model for the neutrino

    Full text link
    The main result of the paper is a new representation for the Weyl Lagrangian (massless Dirac Lagrangian). As the dynamical variable we use the coframe, i.e. an orthonormal tetrad of covector fields. We write down a simple Lagrangian - wedge product of axial torsion with a lightlike element of the coframe - and show that variation of the resulting action with respect to the coframe produces the Weyl equation. The advantage of our approach is that it does not require the use of spinors, Pauli matrices or covariant differentiation. The only geometric concepts we use are those of a metric, differential form, wedge product and exterior derivative. Our result assigns a variational meaning to the tetrad representation of the Weyl equation suggested by J.B.Griffiths and R.A.Newing.Comment: 4 pages, REVTe

    Confining ensemble of dyons

    Full text link
    We construct the integration measure over the moduli space of an arbitrary number of N kinds of dyons of the pure SU(N) gauge theory at finite temperatures. The ensemble of dyons governed by the measure is mathematically described by a (supersymmetric) quantum field theory that is exactly solvable and is remarkable for a number of striking features: 1) The free energy has the minimum corresponding to the zero average Polyakov line, as expected in the confining phase; 2)The correlation function of two Polyakov lines exhibits a linear potential between static quarks in any N-ality non-zero representation, with a calculable string tension roughly independent of temperature; 3) The average spatial Wilson loop falls off exponentially with its area and the same string tension; 4) At a critical temperature the ensemble of dyons rearranges and de-confines; 5)The estimated ratio of the critical temperature to the square root of the string tension is in excellent agreement with the lattice data.Comment: 26 pp. Construction of general N-ality = k strings added. The title change

    Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime

    Full text link
    Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-disk coronae, relativistic jets, magnetar flares) and, potentially, in powerful laser plasma and z-pinch experiments, the energy density is so high that radiation, in particular radiative cooling, may start to play an important role. This observation motivates the development of a theory of high-energy-density radiative magnetic reconnection. As a first step towards this goal, we present in this paper a simple Sweet--Parker-like theory of non-relativistic resistive-MHD reconnection with strong radiative cooling. First, we show how, in the absence of a guide magnetic field, intense cooling leads to a strong compression of the plasma in the reconnection layer, resulting in a higher reconnection rate. The compression ratio and the layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in the radiatively-cooled layer leads to a higher Spitzer resistivity and hence to an extra enhancement of the reconnection rate. We then apply our general theory to several specific astrophysically important radiative processes (bremsstrahlung, cyclotron, and inverse-Compton) in the optically thin regime, for both the zero- and strong-guide-field cases. We derive specific expressions for key reconnection parameters, including the reconnection rate. We also discuss the limitations and conditions for applicability of our theory.Comment: 31 pages, 1 figur

    Formation of Pillars at the Boundaries between H II Regions and Molecular Clouds

    Get PDF
    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value.Comment: 21 pages, 8 figures, accepted for publication in ApJ. high resolution figures available upon reques

    Spectral Asymptotics of Eigen-value Problems with Non-linear Dependence on the Spectral Parameter

    Get PDF
    We study asymptotic distribution of eigen-values ω\omega of a quadratic operator polynomial of the following form (ω2−L(ω))ϕω=0(\omega^2-L(\omega))\phi_\omega=0, where L(ω)L(\omega) is a second order differential positive elliptic operator with quadratic dependence on the spectral parameter ω\omega. We derive asymptotics of the spectral density in this problem and show how to compute coefficients of its asymptotic expansion from coefficients of the asymptotic expansion of the trace of the heat kernel of L(ω)L(\omega). The leading term in the spectral asymptotics is the same as for a Laplacian in a cavity. The results have a number of physical applications. We illustrate them by examples of field equations in external stationary gravitational and gauge backgrounds.Comment: latex, 20 page
    • …
    corecore