16 research outputs found

    Towards comprehensive syntactic and semantic annotations of the clinical narrative

    Get PDF
    Objective: To create annotated clinical narratives with layers of syntactic and semantic labels to facilitate advances in clinical natural language processing (NLP). To develop NLP algorithms and open source components. Methods: Manual annotation of a clinical narrative corpus of 127 606 tokens following the Treebank schema for syntactic information, PropBank schema for predicate-argument structures, and the Unified Medical Language System (UMLS) schema for semantic information. NLP components were developed. Results: The final corpus consists of 13 091 sentences containing 1772 distinct predicate lemmas. Of the 766 newly created PropBank frames, 74 are verbs. There are 28 539 named entity (NE) annotations spread over 15 UMLS semantic groups, one UMLS semantic type, and the Person semantic category. The most frequent annotations belong to the UMLS semantic groups of Procedures (15.71%), Disorders (14.74%), Concepts and Ideas (15.10%), Anatomy (12.80%), Chemicals and Drugs (7.49%), and the UMLS semantic type of Sign or Symptom (12.46%). Inter-annotator agreement results: Treebank (0.926), PropBank (0.891–0.931), NE (0.697–0.750). The part-of-speech tagger, constituency parser, dependency parser, and semantic role labeler are built from the corpus and released open source. A significant limitation uncovered by this project is the need for the NLP community to develop a widely agreed-upon schema for the annotation of clinical concepts and their relations. Conclusions: This project takes a foundational step towards bringing the field of clinical NLP up to par with NLP in the general domain. The corpus creation and NLP components provide a resource for research and application development that would have been previously impossible

    Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients

    No full text
    Background: Automated de-identification methods for removing protected health information (PHI) from the source notes of the electronic health record (EHR) rely on building systems to recognize mentions of PHI in text, but they remain inadequate at ensuring perfect PHI removal. As an alternative to relying on de-identification systems, we propose the following solutions: (1) Mapping the corpus of documents to standardized medical vocabulary (concept unique identifier [CUI] codes mapped from the Unified Medical Language System) thus eliminating PHI as inputs to a machine learning model; and (2) training character-based machine learning models that obviate the need for a dictionary containing input words/n-grams. We aim to test the performance of models with and without PHI in a use-case for an opioid misuse classifier. Methods: An observational cohort sampled from adult hospital inpatient encounters at a health system between 2007 and 2017. A case-control stratified sampling (n = 1000) was performed to build an annotated dataset for a reference standard of cases and non-cases of opioid misuse. Models for training and testing included CUI codes, character-based, and n-gram features. Models applied were machine learning with neural network and logistic regression as well as expert consensus with a rule-based model for opioid misuse. The area under the receiver operating characteristic curves (AUROC) were compared between models for discrimination. The Hosmer-Lemeshow test and visual plots measured model fit and calibration. Results: Machine learning models with CUI codes performed similarly to n-gram models with PHI. The top performing models with AUROCs > 0.90 included CUI codes as inputs to a convolutional neural network, max pooling network, and logistic regression model. The top calibrated models with the best model fit were the CUI-based convolutional neural network and max pooling network. The top weighted CUI codes in logistic regression has the related terms 'Heroin' and 'Victim of abuse'. Conclusions: We demonstrate good test characteristics for an opioid misuse computable phenotype that is void of any PHI and performs similarly to models that use PHI. Herein we share a PHI-free, trained opioid misuse classifier for other researchers and health systems to use and benchmark to overcome privacy and security concerns

    Natural language processing and machine learning to identify alcohol misuse from the electronic health record in trauma patients: development and internal validation

    No full text
    Objective: Alcohol misuse is present in over a quarter of trauma patients. Information in the clinical notes of the electronic health record of trauma patients may be used for phenotyping tasks with natural language processing (NLP) and supervised machine learning. The objective of this study is to train and validate an NLP classifier for identifying patients with alcohol misuse. Materials and Methods: An observational cohort of 1422 adult patients admitted to a trauma center between April 2013 and November 2016. Linguistic processing of clinical notes was performed using the clinical Text Analysis and Knowledge Extraction System. The primary analysis was the binary classification of alcohol misuse. The Alcohol Use Disorders Identification Test served as the reference standard. Results: The data corpus comprised 91 045 electronic health record notes and 16 091 features. In the final machine learning classifier, 16 features were selected from the first 24 hours of notes for identifying alcohol misuse. The classifier's performance in the validation cohort had an area under the receiver-operating characteristic curve of 0.78 (95% confidence interval [CI], 0.72 to 0.85). Sensitivity and specificity were at 56.0% (95% CI, 44.1% to 68.0%) and 88.9% (95% CI, 84.4% to 92.8%). The Hosmer-Lemeshow goodness-of-fit test demonstrates the classifier fits the data well (P.17). A simpler rule-based keyword approach had a decrease in sensitivity when compared with the NLP classifier from 56.0% to 18.2%. Conclusions: The NLP classifier has adequate predictive validity for identifying alcohol misuse in trauma centers. External validation is needed before its application to augment screening
    corecore