4 research outputs found

    Whole Genome Sequencing of a Chlamydia trachomatis Strain Responsible for a Case of Rectal Lymphogranuloma Venereum in Italy

    Get PDF
    Lymphogranuloma venereum (LGV) is a systemic sexually transmitted infection caused by Chlamydia trachomatis serovars L1 to L3. The current LGV cases in Europe are mainly characterized by an anorectal syndrome, spreading within men who have sex with men (MSM). Whole-genome sequencing of LGV strains is crucial to the study of bacterial genomic variants and to improve strategies for contact tracing and prevention. In this study, we described the whole genome of a C. trachomatis strain (LGV/17) responsible for a case of rectal LGV. LGV/17 strain was isolated in 2017 in Bologna (North of Italy) from a HIV-positive MSM, presenting a symptomatic proctitis. After the propagation in LLC-MK2 cells, the strain underwent whole-genome sequencing by means of two platforms. Sequence type was determined using the tool MLST 2.0, whereas the genovariant was characterized by an ompA sequence evaluation. A phylogenetic tree was generated by comparing the LGV/17 sequence with a series of L2 genomes, downloaded from the NCBI website. LGV/17 belonged to sequence type ST44 and to the genovariant L2f. Nine ORFs encoding for polymorphic membrane proteins A-I and eight encoding for glycoproteins Pgp1-8 were detected in the chromosome and in the plasmid, respectively. LGV/17 was closely related to other L2f strains, even in the light of a not-negligible variability. The LGV/17 strain showed a genomic structure similar to reference sequences and was phylogenetically related to isolates from disparate parts of the world, indicative of the long-distance dynamics of transmission

    Role of D(-)-Lactic Acid in Prevention of Chlamydia trachomatis Infection in an In Vitro Model of HeLa Cells

    Get PDF
    A vaginal microbiota dominated by certain Lactobacillus species may have a protective effect against Chlamydia trachomatis infection. One of the key antimicrobial compounds produced is lactic acid, which is believed to play a central role in host defense. Lactobacillus strains producing the D(-)-lactic acid isomer are known to exert stronger protection. However, the molecular mechanisms underlying this antimicrobial action are not well understood. The aim of this study was to investigate the role of D(-)-lactic acid isomer in the prevention of C. trachomatis infection in an in vitro HeLa cell model. We selected two strains of lactobacilli belonging to different species: a vaginal isolate of Lactobacillus crispatus that releases both D(-) and L(+) isomers and a strain of Lactobacillus reuteri that produces only the L(+) isomer. Initially, we demonstrated that L. crispatus was significantly more effective than L. reuteri in reducing C. trachomatis infectivity. A different pattern of histone acetylation and lactylation was observed when HeLa cells were pretreated for 24 h with supernatants of Lactobacillus crispatus or L. reuteri, resulting in different transcription of genes such as CCND1, CDKN1A, ITAG5 and HER-1. Similarly, distinct transcription patterns were found in HeLa cells treated with 10 mM D(-)- or L(+)-lactic acid isomers. Our findings suggest that D(-) lactic acid significantly affects two non-exclusive mechanisms involved in C. trachomatis infection: regulation of the cell cycle and expression of EGFR and α5β1-integrin

    Torquetenovirus in pregnancy: Correlation with vaginal microbiome, metabolome and pro-inflammatory cytokines

    Get PDF
    Torquetenovirus (TTV) is a negative sense, single-stranded DNA virus present in many body fluids of apparently healthy individuals. At present, it is considered a non-pathogenic endogenous virus. TTV can be detected in the vagina of pregnant women, its abundance being modulated with the extent of immune system activation. Until now, there is only scarce information regarding the association between TTV and the composition of the vaginal environment. Therefore, this study aimed to assess the presence of TTV in the vaginal ecosystem of a cohort of white women with a normal pregnancy (n = 60) at different gestational stages (first, second and third trimester) and in 9 subjects suffering a first trimester miscarriage. For each woman, we determined (i) the presence and titer of TTV, (ii) the vaginal bacterial composition by means of Nugent score and 16S rRNA gene sequencing, (iii) the vaginal metabolic profiles through H-1-NMR spectroscopy, and (iv) the vaginal concentration of two pro-inflammatory cytokines (IL-6 and IL-8). More than one third of women were found negative for TTV at all gestational stages. Although not statistically significant, the positivity for TTV dropped from 53.3% in the first to 36.6% in the third trimester. TTV loads varied greatly among vaginal samples, ranging between 2 x 10(1) and 2 x 10(5) copies/reaction. No difference in TTV prevalence and loads was observed between women with normal pregnancies and miscarriages. The presence of TTV was more common in women with a higher vaginal leucocyte count (p = 0.02). The levels of IL-6 (p = 0.02), IL-8 (p = 0.03), propionate (p = 0.001) and cadaverine (p = 0.006) were significantly higher in TTV-positive samples. TTV titer was positively correlated with the concentrations of 4-hydroxyphenyllactate (p < 0.0001), isoleucine (p = 0.01) and phenylalanine (p = 0.04). TTV-positive samples were characterized by a higher relative abundance of Sneathia (p = 0.04) and Shuttleworthia (p = 0.0009). In addition, a trend toward a decrease of Lactobacillus crispatus and Lactobacillus jensenii, and an increase of Lactobacillus iners was observed for TTV-positive samples. In conclusion, we found that TTV is quite common in women with normal pregnancy outcomes, representing a possible predictor of local immune status

    Non-pathogenic Neisseria species of the oropharynx as a reservoir of antimicrobial resistance: a cross-sectional study

    Get PDF
    Commensal Neisseria species of the oropharynx represent a significant reservoir of antimicrobial resistance determinants that can be transferred to Neisseria gonorrhoeae. This aspect is particularly crucial in ‘men having sex with men’ (MSM), a key population in which pharyngeal co-colonization by N. gonorrhoeae and non-pathogenic Neisseria species is frequent and associated with the emergence of antimicrobial resistance. Here, we explored the antimicrobial susceptibility of a large panel of non-pathogenic Neisseria species isolated from the oropharynx of two populations: a group of MSM attending a ‘sexually transmitted infection’ clinic in Bologna (Italy) (n=108) and a group of males representing a ‘general population’ (n=119). We collected 246 strains, mainly belonging to N. subflava (60%) and N. flavescens (28%) species. Their antimicrobial susceptibility was evaluated assessing the minimum inhibitory concentrations (MICs) for azithromycin, ciprofloxacin, cefotaxime, and ceftriaxone using E-test strips. Overall, commensal Neisseria spp. showed high rates of resistance to azithromycin (90%; median MICs: 4.0 mg/L), and ciprofloxacin (58%; median MICs: 0.12 mg/L), whereas resistance to cephalosporins was far less common (<15%). Neisseria strains from MSM were found to have significantly higher MICs for azithromycin (p=0.0001) and ciprofloxacin (p<0.0001) compared to those from the general population. However, there was no significant difference in cephalosporin MICs between the two groups. The surveillance of the antimicrobial resistance of non-pathogenic Neisseria spp. could be instrumental in predicting the risk of the spread of multi-drug resistant gonorrhea. This information could be an early predictor of an excessive use of antimicrobials, paving the way to innovative screening and prevention policies
    corecore