10 research outputs found

    Routine Magnetic Resonance Imaging at Term-Equivalent Age Detects Brain Injury in 25% of a Contemporary Cohort of Very Preterm Infants.

    No full text
    In recent years, significant investigation has been undertaken by means of magnetic resonance imaging (MRI) in an attempt to identify preterm infants at risk for adverse outcome. The primary objective is to provide a comprehensive characterization of cerebral injury detected by conventional MRI at term-equivalent age in an unselected, consecutive, contemporary cohort of preterm infants born <32 gestational weeks. Secondly, this study aims to identify risk factors for the different injury types in this population.Data for all preterm infants born <32 gestational weeks and admitted to Innsbruck Medical University Hospital were prospectively collected (October 2010 to December 2015). Cerebral MRI was evaluated retrospectively using a validated scoring system that incorporates intraventricular haemorrhage (IVH), white matter disease (WMD) and cerebellar haemorrhage (CBH).300 infants were included in the study. MRI showed 24.7% of all infants to have some form of brain injury. The most common injury type was IVH (16.0%). WMD and CBH were seen in 10.0% and 8.0%. The prevalence of common neonatal risk factors was greater within the group of infants with CBH. In particular indicators for respiratory disease were observed more often: longer ventilation duration, more frequent need for supplemental oxygen at day 28, higher rates of hydrocortisone treatment. Catecholamine treatment was the only neonatal risk factor that was overrepresented in infants with WMD.Cerebral MRI at term-equivalent age, as addition to cranial ultrasound, detected brain injury in 25% of preterm survivors. The diagnosis of IVH was already made by neonatal ultrasound in most cases. In contrast, only a minority of the CBH and none of the non-cystic WMD have been detected prior to MRI. Decreasing gestational age and neonatal complications involved with immaturity have been identified as risk factors for CBH, whereas WMD was found in relatively mature infants with circulatory disturbances

    MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein

    No full text
    Antibodies against the myelin oligodendrocyte glycoprotein (MOG-Ab) can be detected in various pediatric acquired demyelinating syndromes (ADS). Here, we analyze the spectrum of neuroradiologic findings in children with MOG-Ab and a first demyelinating event. The cerebral and spinal MRI of 69 children with different ADS was assessed in regard to the distribution and characteristics of lesions. Children with acute disseminated encephalomyelitis (n = 36) or neuromyelitis optica spectrum disorder (n = 5) presented an imaging pattern characterized predominantly by poorly demarcated lesions with a wide supra- and infratentorial distribution. Younger children also tended to have poorly defined and widespread lesions. The majority of patients with an isolated optic neuritis (n = 16) only presented small non-specific brain lesions or none at all. A longitudinally extensive transverse myelitis mainly affecting the cervical, and less often so the thoracic, lumbar, and conus regions, was detected in 31 children. The three children of our cohort who were then finally diagnosed with multiple sclerosis had at onset already demarcated white matter lesions as well as transverse myelitis. In conclusion, children with MOG seropositive ADS present disparate, yet characteristic imaging patterns. These patterns have been seen to correlate to the disease entity as well as to age of symptom onset
    corecore