549 research outputs found

    The Search for Higgs particles at high-energy colliders: Past, Present and Future

    Full text link
    I briefly review the Higgs sector in the Standard Model and its minimal Supersymmetric extension, the MSSM. After summarizing the properties of the Higgs bosons and the present experimental constraints, I will discuss the prospects for discovering these particle at the upgraded Tevatron, the LHC and a high-energy e+ee^+e^- linear collider. The possibility of studying the properties of the Higgs particles will be then summarized.Comment: 28 pages, latex, 15 figures, talk at WHEPP VII, Allahabad, Indi

    Higgs Physics at Future Colliders: recent theoretical developments

    Full text link
    I review the physics of the Higgs sector in the Standard Model and its minimal supersymmetric extension, the MSSM. I will discuss the prospects for discovering the Higgs particles at the upgraded Tevatron, at the Large Hadron Collider, and at a future high--energy e+ee^+e^- linear collider with centre--of--mass energy in the 350--800 GeV range, as well as the possibilities for studying their fundamental properties. Some emphasis will be put on the theoretical developments which occurred in the last two years.Comment: 20 pages, latex, 12 figures. Talk given at PASCOS 2003 (Bombay, India

    Three-body decays of sleptons in models with non-universal Higgs masses

    Get PDF
    We compute the three-body decays of charged sleptons and sneutrinos into other sleptons. These decays are of particular interest in SUSY-breaking models with non-universal Higgs mass parameters, where the left-chiral sleptons can be lighter than the right-chiral ones, and lighter than the lightest neutralino. We present the formulas for the three-body decay widths together with a numerical analysis in the context of gaugino-mediated SUSY breaking with a gravitino LSP.Comment: Version published in JHEP. See http://cern.ch/kraml/papers/ for high-res figure

    Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings

    Full text link
    We study how general two Higgs doublet models can be constrained by considering their properties under renormalization group evolution of the Yukawa couplings. We take into account both the appearance of a Landau pole as well as off-diagonal Yukawa couplings leading to flavour changing neutral currents in violation with experimental constraints at the electroweak scale. We find that the latter condition can be used to limit the amount of Z2 symmetry breaking allowed in a given model.Comment: 28 pages, 10 figures, added discussion of evolution from high to low scales, to be published in JHE

    Higgs production with large transverse momentum in hadronic collisions at next-to-leading order

    Get PDF
    Inclusive associated production of a light Higgs boson (m_H < m_t) with one jet in pp collisions is studied in next-to-leading order QCD. Transverse momentum (p_T < 30 GeV) and rapidity distributions of the Higgs boson are calculated for the LHC in the large top-quark mass limit. It is pointed out that, as much as in the case of inclusive Higgs production, the K-factor of this process is large (~1.6) and depends weakly on the kinematics in a wide range of transverse momentum and rapidity intervals. Our result confirms previous suggestions that the production channel p+p -> H+jet -> gamma+gamma+jet gives a measurable signal for Higgs production at the LHC in the mass range 100-140 GeV, crucial also for the ultimate test of the Minimal Supersymmetric Standard Model.Comment: 7 pages, 3 eps figures include

    Natural Little Hierarchy from a Partially Goldstone Twin Higgs

    Full text link
    We construct a simple theory in which the fine-tuning of the standard model is significantly reduced. Radiative corrections to the quadratic part of the scalar potential are constrained to be symmetric under a global U(4) x U(4)' symmetry due to a discrete Z_2 "twin" parity, while the quartic part does not possess this symmetry. As a consequence, when the global symmetry is broken the Higgs fields emerge as light pseudo-Goldstone bosons, but with sizable quartic self-interactions. This structure allows the cutoff scale, \Lambda, to be raised to the multi-TeV region without significant fine-tuning. In the minimal version of the theory, the amount of fine-tuning is about 15% for \Lambda = 5 TeV, while it is about 30% in an extended model. This provides a solution to the little hierarchy problem. In the minimal model, the "visible" particle content is exactly that of the two Higgs doublet standard model, while the extended model also contains extra vector-like fermions with masses ~(1-2)TeV. At the LHC, our minimal model may appear exactly as the two Higgs doublet standard model, and new physics responsible for cutting off the divergences of the Higgs mass-squared parameter may not be discovered. Several possible processes that may be used to discriminate our model from the simple two Higgs doublet model are discussed for the LHC and for a linear collider.Comment: 22 page

    Constraints on the MSSM from the Higgs Sector - A pMSSM Study of Higgs Searches, Bs -> mu+ mu- and Dark Matter Direct Detection

    Full text link
    We discuss the constraints on Supersymmetry in the Higgs sector arising from LHC searches, rare B decays and dark matter direct detection experiments. We show that constraints derived on the mass of the lightest h0 and the CP-odd A0 bosons from these searches are covering a broader fraction of the SUSY parameter space compared to searches for strongly interacting supersymmetric particle partners. We discuss the implications of a mass determination in the range 123 < Mh < 127 GeV, inspired by the intriguing hints reported by the ATLAS and CMS collaborations, as well as those of a non-observation of the lightest Higgs boson on MSSM scenarios not excluded at the end of 2012 by LHC and direct dark matter searches and their implications on LHC SUSY searches.Comment: 11 pages, 12 figures. v3 increased scan statistics and parameter range, added Higgs rate constraints, text and references reviewed, to appear on Eur. Phys. J.

    One-Loop QCD Mass Effects in the Production of Polarized Bottom and Top Quarks

    Full text link
    The analytic expressions for the production cross sections of polarized bottom and top quarks in e+ee^+e^- annihilation are explicitly derived at the one-loop order of strong interactions. Chirality-violating mass effects will reduce the longitudinal spin polarization for the light quark pairs by an amount of 3%3\%, when one properly considers the massless limit for the final quarks. Numerical estimates of longitudinal spin polarization effects in the processes e+ebbˉ(g)e^+e^-\to b\bar{b}(g) and e+ettˉ(g)e^+e^- \to t\bar{t}(g) are presented.Comment: 17 p. (5 figs available upon request), LaTeX, MZ-TH/93-30, RAL/93-81, FTUV/93-4

    Higgs and Z boson decays into light gluinos

    Full text link
    We calculate the decay rate of scalar and pseudoscalar Higgs bosons into a pair of gluinos, within the Minimal Supersymmetric Standard Model. In the theoretically and experimentally allowed light gluino window, \mg \sim 3--5 GeV, gluino pairs can completely dominate the decays of the light scalar Higgs boson and play a prominent role in the decay of the pseudoscalar Higgs boson. This would alter the limits obtained from ZZ decays on the lightest CP--even and CP--odd Higgs bosons, and could jeopardize the search for these Higgs particles at future hadron colliders. In contrast, the branching ratio for the two--body decay of ZZ bosons into pairs of light gluinos is less than 0.1\%.Comment: Latex file, 16 pages of text. 8 uufiled postscript figures included. Compressed postscript version with figures available by anonymous ftp at ftp://phenom.physics.wisc.edu/pub/preprints/current/madph-94-853.ps.

    Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions

    Get PDF
    We study the region of small transverse momenta in qqbar- and gg-initiated processes with no colored particle detected in the final state. We present the universal expression of the O(alpha_s^2) logarithmically enhanced contributions up to next-to-next-to-leading logarithmic accuracy. From there we extract the coefficients that allow the resummation of the large logarithmic contributions. We find that the coefficient known in the literature as B^{(2)} is process dependent, since it receives a hard contamination from the one loop correction to the leading order subprocess. We present the general result of B^{(2)} for both quark and gluon channels. In particular, in the case of Higgs production, this result will be relevant to improve the matching between resummed predictions and fixed order calculations.Comment: LaTeX, 8 pages. Few typos corrected, particularly Eq.(25). Two references added, to be published in PR
    corecore