2,620 research outputs found

    Constrained Dynamics of Tachyon Field in FRWL Spacetime

    Get PDF
    In this paper we continue study of tachyon scalar field described by a Dirac-Born-Infeld (DBI) type action with constraints in the cosmological context. The proposed extension of the system introducing an auxiliary field in the minisuperspace framework is discussed. A new equivalent set of constraints is constructed, satisfying the usual regularity conditions.Comment: 10 pages, to be published in the Special Issue of the Facta Universitatis Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2019 (3-14 June 2018, Nis, Serbia

    Practical quantum realization of the ampere from the electron charge

    Full text link
    One major change of the future revision of the International System of Units (SI) is a new definition of the ampere based on the elementary charge \emph{e}. Replacing the former definition based on Amp\`ere's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from \emph{e}, accurate to within 10810^{-8} in relative value and fulfilling traceability needs, is still missing despite many efforts have been spent for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are quantized in terms of efJef_\mathrm{J} (fJf_\mathrm{J} is the Josephson frequency) with a measurement uncertainty of 10810^{-8}. This new quantum current source, able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. Beyond, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single electron pumps.Comment: 15 pages, 4 figure

    Inflationary RSII Model with a Matter in the Bulk and Exponential Potential of Tachyon Field

    Get PDF
    In this paper we study a tachyon cosmological model based on dynamics of a 3-brane in the second Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter in the bulk changes warp factor which leads to modification of inflationary dynamics. The additional brane behaves effectively as a tachyon. We calculate numerically observation parameters of inflation: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for the exponential potential of tachyon field.Comment: 9 pages, 1 figure, will be published in the Special Issue of Facta Universitatis, Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2018 (3-14 June 2018

    Numerical Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation

    Full text link
    We present results obtained by a software we developed for computing observational cosmological inflation parameters: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for a standard single field and tachyon inflation, as well as for a tachyon inflation in the second Randall-Sundrum model with an additional radion field. The calculated numerical values of observational parameters are compared with the latest results of observations obtained by the Planck Collaboration. The program is written in C/C++. The \textit{GNU Scientific Library} is used for some of the numerical computations and R language is used for data analysis and plots.Comment: 8 pages, 5 figures, based on talk presented at The 10th Jubilee Conference of the Balkan Physical Union (BPU10), 26-30 August 2018 (Sofia, Bulgaria

    Zero Dimensional Field Theory of Tachyon Matter

    Get PDF
    The first issue about the object (now) called tachyons was published almost one century ago. Even though there is no experimental evidence of tachyons there are several reasons why tachyons are still of interest today, in fact interest in tachyons is increasing. Many string theories have tachyons occurring as some of the particles in the theory. In this paper we consider the zero dimensional version of the field theory of tachyon matter proposed by A. Sen. Using perturbation theory and ideas of S. Kar, we demonstrate how this tachyon field theory can be connected with a classical mechanical system, such as a massive particle moving in a constant field with quadratic friction. The corresponding Feynman path integral form is proposed using a perturbative method. A few promising lines for further applications and investigations are noted.Comment: 2 pages, Talk presented at the 6th International Conference of Balkan Physical Union - BPU6, Istanbul, Turkey, August 22-26. 200

    MicroRNA-Regulated Signaling Pathways: Potential Biomarkers for Pancreatic Ductal Adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC

    Magnetic and electric contributions to the energy loss in a dynamical QCD medium

    Full text link
    The computation of radiative energy loss in a finite size QCD medium with dynamical constituents is a key ingredient for obtaining reliable predictions for jet quenching in ultra-relativistic heavy ion collisions. It was previously shown that energy loss in dynamical QCD medium is significantly higher compared to static QCD medium. To understand this difference, we here analyze magnetic and electric contributions to energy loss in dynamical QCD medium. We find that the significantly higher energy loss in the dynamical case is entirely due to appearance of magnetic contribution in the dynamical medium. While for asymptotically high energies, the energy loss in static and dynamical medium approach the same value, we find that the physical origin of the energy loss in these two cases is different.Comment: 6 pages, 4 figure
    corecore