6 research outputs found

    The triangle test statistic (TTS): a test of genetic homogeneity using departure from the triangle constraints in IBD distribution among affected sib-pairs

    No full text
    The proportions of affected sibs sharing 2, 1 or 0 identical by descent parental marker alleles have been shown to conform to the 'triangle constraints' (Suarez, 1978; Holmans, 1993). It has also been shown (Dudoit & Speed, 1999) that the constraints are verified provided certain assumptions hold. In this study we explore a realistic situation in which the constraints fail due to the presence of a factor in which the sibs differ, a factor on which penetrance depends. This factor may be a characteristic of the trait (severe vs. mild form), or the presence/absence of an associated trait or an environmental factor. We show that under such situations, using the triangle constraints may lead to important loss of power to detect linkage by the MLS test. We propose here an alternative approach in order to detect both linkage and heterogeneity

    Interaction between the DNAH9 gene and early smoke exposure in bronchial hyper-responsiveness

    No full text
    A previous genome-wide linkage scan of bronchial hyper-responsiveness (BHR) in EGEA families, performed in presence of G x ETS (early life environmental tobacco smoke) exposure interaction, showed the strongest interaction in 17p11 region where linkage was detected only among unexposed siblings. Our goal was to conduct fine-scale mapping of 17p11 to identify single nucleotide polymorphisms (SNPs) interacting with ETS that influence BHR. Analyses were performed in 388 French EGEA asthmatic families, using a two-step strategy: 1) selection of SNPs displaying FBAT (family-based association test) association signals (P?0.01) with BHR in unexposed siblings; 2) FBAT homogeneity test between exposed and unexposed siblings plus a robust log-linear interaction test. A single SNP reached the threshold (P? 3.10-3) for significant interaction with ETS using both interaction tests, after accounting for multiple testing. Results were replicated in 253 French-Canadian families but were not in 341 UK families, probably due in part to differences in phenotypic features between datasets.The SNP showing significant interaction with ETS belongs to DNAH9, a promising candidate gene involved in respiratory cilia mobility and associated with Primary Ciliary Dyskinesia, a disease associated with abnormalities of pulmonary function

    The ANO3/MUC15 locus is associated with eczema in families ascertained through asthma

    No full text
    BACKGROUND: A previous genome-wide linkage scan in 295 families of the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA) reported strong evidence of linkage of 11p14 to eczema. OBJECTIVE: Our purpose was to conduct fine-scale mapping of the 11p14 region to identify the genetic variants associated with eczema. METHODS: Association analyses were first conducted in the family sample from the French EGEA by using 2 methods: the family-based association method and logistic regression. Replication of the EGEA findings was sought in French Canadian and United Kingdom family samples, which, similarly to EGEA samples, were ascertained through asthma. We also tested for association in 2 German samples ascertained through eczema. RESULTS: We found significant association of eczema with 11p14 genetic variants in the vicinity of the linkage peak in EGEA (P = 10(-4) for rs1050153 by using the family-based association method, which reached the multiple testing-corrected threshold of 10(-4); P = .003 with logistic regression). Pooled analysis of the 3 asthma-ascertained samples showed strong improvement in the evidence for association (P = 6 × 10(-6) for rs293974, P = 3 × 10(-5) for rs1050153, and P = 8 × 10(-5) for rs15783). No association was observed in the eczema-ascertained samples. CONCLUSION: The significant single nucleotide polymorphisms are located within the overlapping anoctamin 3 (ANO3) and mucin 15 (MUC15) genes. Several lines of evidence suggest that MUC15 is a strong candidate for eczema. Further investigation is needed to confirm our findings and to better understand the role of the ANO3/MUC15 locus in eczema and its relationship with respect to asthma

    Meta-analysis identifies seven susceptibility loci involved in the atopic march.

    Get PDF
    Eczema often precedes the development of asthma in a disease course called the 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 × 10(-8)) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 × 10(-9)). Additional susceptibility loci identified at genome-wide significance are FLG (1q21.3), IL4/KIF3A (5q31.1), AP5B1/OVOL1 (11q13.1), C11orf30/LRRC32 (11q13.5) and IKZF3 (17q21). We show that predominantly eczema loci increase the risk for the atopic march. Our findings suggest that eczema may play an important role in the development of asthma after eczema
    corecore