20,551 research outputs found

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Spinning branes in Riemann-Cartan spacetime

    Full text link
    We use the conservation law of the stress-energy and spin tensors to study the motion of massive brane-like objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant world-line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Swimming in curved space or The Baron and the cat

    Full text link
    We study the swimming of non-relativistic deformable bodies in (empty) static curved spaces. We focus on the case where the ambient geometry allows for rigid body motions. In this case the swimming equations turn out to be geometric. For a small swimmer, the swimming distance in one stroke is determined by the Riemann curvature times certain moments of the swimmer.Comment: 19 pages 6 figure

    On Lorentz invariance and supersymmetry of four particle scattering amplitudes in SNR8S^N\R^8 orbifold sigma model

    Get PDF
    The SNR8S^N\R^8 supersymmetric orbifold sigma model is expected to describe the IR limit of the Matrix string theory. In the framework of the model the type IIA string interaction is governed by a vertex which was recently proposed by R.Dijkgraaf, E.Verlinde and H.Verlinde. By using this interaction vertex we derive all four particle scattering amplitudes directly from the orbifold model in the large NN limit.Comment: Latex, 23 page

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    EFFICIENT ANALYTIC COMPUTATION OF HIGHER-ORDER QCD AMPLITUDES

    Get PDF
    We review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints.Comment: Talk given at Beyond the Standard Model IV, December 13-18 1994, Lake Tahoe, CA. Latex, 4 pages, no figures

    Six Months In: Pandemic Crime Trends in England and Wales to August 2020

    Get PDF
    • …
    corecore