51 research outputs found

    Simulating the Impact of X-ray Heating during the Cosmic Dawn

    Get PDF
    Upcoming observations of the 21-cm signal from the Epoch of Reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long range X-ray heating of the intergalactic gas. During the preceding Cosmic Dawn era the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest-volume (349\,Mpc comoving=244~h−1h^{-1}Mpc) full numerical radiative transfer simulations to date of this epoch that include the effects of helium and multi-frequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11~arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.Comment: 13 pages, 8 figure

    Clues to the nature of dark matter from first galaxies

    Full text link
    We use thirty-eight high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 10910^9 M⊙_{\odot}; at a fixed halo mass, WDM produces fewer stars than CDM; and finally at halo masses below 10910^9 M⊙_{\odot}, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below ∼107\sim 10^7 M⊙_{\odot}. For z>7z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z∼6z \sim 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.Comment: 11 pages, 8 figures, submitted to MNRA

    NIHAO XX: The impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes

    Full text link
    We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the impact of the threshold for star formation on the response of the dark matter (DM) halo to baryonic processes. The fiducial NIHAO threshold, n=10 cm−3n=10\, {\rm cm}^{-3}, results in strong expansion of the DM halo in galaxies with stellar masses in the range 107.5<Mstar<109.5M⊙10^{7.5} < M_{star} < 10^{9.5} M_{\odot}. We find that lower thresholds such as n=0.1n=0.1 (as employed by the EAGLE/APOSTLE and Illustris/AURIGA projects) do not result in significant halo expansion at any mass scale. Halo expansion driven by supernova feedback requires significant fluctuations in the local gas fraction on sub-dynamical times (i.e., < 50 Myr at galaxy half-light radii), which are themselves caused by variability in the star formation rate. At one per cent of the virial radius, simulations with n=10n=10 have gas fractions of ≃0.2\simeq 0.2 and variations of ≃0.1\simeq 0.1, while n=0.1n=0.1 simulations have order of magnitude lower gas fractions and hence do not expand the halo. The observed DM circular velocities of nearby dwarf galaxies are inconsistent with CDM simulations with n=0.1n=0.1 and n=1n=1, but in reasonable agreement with n=10n=10. Star formation rates are more variable for higher nn, lower galaxy masses, and when star formation is measured on shorter time scales. For example, simulations with n=10n=10 have up to 0.4 dex higher scatter in specific star formation rates than simulations with n=0.1n=0.1. Thus observationally constraining the sub-grid model for star formation, and hence the nature of DM, should be possible in the near future.Comment: 18 pages, 13 figures, accepted to MNRA

    The edge of galaxy formation III: The effects of warm dark matter on Milky Way satellites and field dwarfs

    Full text link
    In this third paper of the series, we investigate the effects of warm dark matter with a particle mass of mWDM=3 keVm_\mathrm{WDM}=3\,\mathrm{keV} on the smallest galaxies in our Universe. We present a sample of 21 hydrodynamical cosmological simulations of dwarf galaxies and 20 simulations of satellite-host galaxy interaction that we performed both in a Cold Dark Matter (CDM) and Warm Dark Matter (WDM) scenario. In the WDM simulations, we observe a higher critical mass for the onset of star formation. Structure growth is delayed in WDM, as a result WDM haloes have a stellar population on average two Gyrs younger than their CDM counterparts. Nevertheless, despite this delayed star formation, CDM and WDM galaxies are both able to reproduce the observed scaling relations for velocity dispersion, stellar mass, size, and metallicity at z=0z=0. WDM satellite haloes in a Milky Way mass host are more susceptible to tidal stripping due to their lower concentrations, but their galaxies can even survive longer than the CDM counterparts if they live in a dark matter halo with a steeper central slope. In agreement with our previous CDM satellite study we observe a steepening of the WDM satellites' central dark matter density slope due to stripping. The difference in the average stellar age for satellite galaxies, between CDM and WDM, could be used in the future for disentangling these two models.Comment: 10 pages, 11 figures, accepted for publication on MNRA

    Relative baryon-dark matter velocities in cosmological zoom simulations

    Full text link
    Supersonic relative motion between baryons and dark matter due to the decoupling of baryons from the primordial plasma after recombination affects the growth of the first small-scale structures. Large box sizes (greater than a few hundred Mpc) are required to sample the full range of scales pertinent to the relative velocity, while the effect of the relative velocity is strongest on small scales (less than a few hundred kpc). This separation of scales naturally lends itself to the use of `zoom' simulations, and here we present our methodology to self-consistently incorporate the relative velocity in zoom simulations, including its cumulative effect from recombination through to the start time of the simulation. We apply our methodology to a large-scale cosmological zoom simulation, finding that the inclusion of relative velocities suppresses the halo baryon fraction by 4646--2323 per cent between z=13.6z=13.6 and 11.211.2, in qualitative agreement with previous works. In addition, we find that including the relative velocity delays the formation of star particles by ∼20 Myr\sim 20 {~\rm Myr} Myr on average (of the order of the lifetime of a ∼9 M⊙\sim 9~{\rm M}_\odot Population III star) and suppresses the final stellar mass by as much as 7979 per cent at z=11.2z=11.2.Comment: 14 pages, 12 figures. Accepted for publication in MNRA

    The large-scale observational signatures of low-mass galaxies during reionization

    Get PDF
    Observations of the epoch of reionization give us clues about the nature and evolution of the sources of ionizing photons, or early stars and galaxies. We present a new suite of structure formation and radiative transfer simulations from the PRACE4LOFAR project designed to investigate whether the mechanism of radiative feedback, or the suppression of star formation in ionized regions from UV radiation, can be inferred from these observations. Our source halo mass extends down to 108M⊙10^8 M_\odot, with sources in the mass range 10810^8 to 109M⊙10^9 M_\odot expected to be particularly susceptible to feedback from ionizing radiation, and we vary the aggressiveness and nature of this suppression. Not only do we have four distinct source models, we also include two box sizes (67 Mpc and 349 Mpc), each with two grid resolutions. This suite of simulations allows us to investigate the robustness of our results. All of our simulations are broadly consistent with the observed electron-scattering optical depth of the cosmic microwave background and the neutral fraction and photoionization rate of hydrogen at z∼6z\sim6. In particular, we investigate the redshifted 21-cm emission in anticipation of upcoming radio interferometer observations. We find that the overall shape of the 21-cm signal and various statistics are robust to the exact nature of source suppression, the box size, and the resolution. There are some promising model discriminators in the non-Gaussianity and small-scale power spectrum of the 21-cm signal.Comment: 21 pages, 15 figures, MNRAS accepte

    Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn

    Get PDF
    The upcoming radio interferometer Square Kilometre Array (SKA) is expected to directly detect the redshifted 21-cm signal from the neutral hydrogen present during the Cosmic Dawn. Temperature fluctuations from X-ray heating of the neutral intergalactic medium can dominate the fluctuations in the 21-cm signal from this time. This heating depends on the abundance, clustering, and properties of the X-ray sources present, which remain highly uncertain. We present a suite of three new large-volume, 349 Mpc a side, fully numerical radiative transfer simulations including QSO-like sources, extending the work previously presented in Ross et al. (2017). The results show that our QSOs have a modest contribution to the heating budget, yet significantly impact the 21-cm signal. Initially, the power spectrum is boosted on large scales by heating from the biased QSO-like sources, before decreasing on all scales. Fluctuations from images of the 21-cm signal with resolutions corresponding to SKA1-Low at the appropriate redshifts are well above the expected noise for deep integrations, indicating that imaging could be feasible for all the X-ray source models considered. The most notable contribution of the QSOs is a dramatic increase in non-Gaussianity of the signal, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. However, in the case of late Lyman-α saturation, this non-Gaussianity could be dramatically decreased particularly when heating occurs earlier. We conclude that increased non-Gaussianity is a promising signature of rare X-ray sources at this time, provided that Lyman-α saturation occurs before heating dominates the 21-cm signal
    • …
    corecore