12,503 research outputs found
Atmospheric effects on remote sensing of non-uniform temperature sources
The effects are considered of an absorbing, emitting, and scattering atmosphere upon the remote sensing of surface areas having non-uniform intensity. These atmospheric effects may be significant in determination, by remote sensing, of non-uniform surface temperature distributions, and the results of the investigation are applicable in such cases. Analytical methods and a digital computational program are presented, expressing the results in terms of contrast and contrast transmittance between two adjacent emitting areas having unequal intensities, in the presence of a additional disturbing emitters. In the computational procedure, emitting areas are replaced by point-source emitters, each assigned and effective intensity based upon the intensity of the area it replaces. Absorbing, emitting, and scattering behavior of the atmosphere may be specified in the computational procedure either by means of analytical atmospheric models or by means of calibrating ground level emitters
Spinning branes in Riemann-Cartan spacetime
We use the conservation law of the stress-energy and spin tensors to study
the motion of massive brane-like objects in Riemann-Cartan geometry. The
world-sheet equations and boundary conditions are obtained in a manifestly
covariant form. In the particle case, the resultant world-line equations turn
out to exhibit a novel spin-curvature coupling. In particular, the spin of a
zero-size particle does not couple to the background curvature. In the string
case, the world-sheet dynamics is studied for some special choices of spin and
torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric
external field is obtained. Geometrically, the Kalb-Ramond field has been
recognized as a part of the torsion itself, rather than the torsion potential
Atmospheric effects on remote sensing of non-uniform temperature sources
The equations of transfer, for a plane-parallel scattering atmosphere with a point source of energy on the lower bounding surface, were solved for various values of sensor/point source orientation and optical depths. Applications of this analysis to Skylab and ERTS mission are discussed, and requirements for atmospheric property data and radiation transfer properties are considered
Spinning test particles and clock effect in Schwarzschild spacetime
We study the behaviour of spinning test particles in the Schwarzschild
spacetime. Using Mathisson-Papapetrou equations of motion we confine our
attention to spatially circular orbits and search for observable effects which
could eventually discriminate among the standard supplementary conditions
namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the
world line chosen for the multipole reduction and whose unit tangent we denote
as is a circular orbit then also the generalized momentum of the
spinning test particle is tangent to a circular orbit even though and
are not parallel four-vectors. These orbits are shown to exist because the spin
induced tidal forces provide the required acceleration no matter what
supplementary condition we select. Of course, in the limit of a small spin the
particle's orbit is close of being a circular geodesic and the (small)
deviation of the angular velocities from the geodesic values can be of an
arbitrary sign, corresponding to the possible spin-up and spin-down alignment
to the z-axis. When two spinning particles orbit around a gravitating source in
opposite directions, they make one loop with respect to a given static observer
with different arrival times. This difference is termed clock effect. We find
that a nonzero gravitomagnetic clock effect appears for oppositely orbiting
both spin-up or spin-down particles even in the Schwarzschild spacetime. This
allows us to establish a formal analogy with the case of (spin-less) geodesics
on the equatorial plane of the Kerr spacetime. This result can be verified
experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum
gravity, 200
Classical String in Curved Backgrounds
The Mathisson-Papapetrou method is originally used for derivation of the
particle world line equation from the covariant conservation of its
stress-energy tensor. We generalize this method to extended objects, such as a
string. Without specifying the type of matter the string is made of, we obtain
both the equations of motion and boundary conditions of the string. The world
sheet equations turn out to be more general than the familiar minimal surface
equations. In particular, they depend on the internal structure of the string.
The relevant cases are classified by examining canonical forms of the effective
2-dimensional stress-energy tensor. The case of homogeneously distributed
matter with the tension that equals its mass density is shown to define the
familiar Nambu-Goto dynamics. The other three cases include physically relevant
massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc
Speckle-visibility spectroscopy: A tool to study time-varying dynamics
We describe a multispeckle dynamic light scattering technique capable of
resolving the motion of scattering sites in cases that this motion changes
systematically with time. The method is based on the visibility of the speckle
pattern formed by the scattered light as detected by a single exposure of a
digital camera. Whereas previous multispeckle methods rely on correlations
between images, here the connection with scattering site dynamics is made more
simply in terms of the variance of intensity among the pixels of the camera for
the specified exposure duration. The essence is that the speckle pattern is
more visible, i.e. the variance of detected intensity levels is greater, when
the dynamics of the scattering site motion is slow compared to the exposure
time of the camera. The theory for analyzing the moments of the spatial
intensity distribution in terms of the electric field autocorrelation is
presented. It is demonstrated for two well-understood samples, a colloidal
suspension of Brownian particles and a coarsening foam, where the dynamics can
be treated as stationary. However, the method is particularly appropriate for
samples in which the dynamics vary with time, either slowly or rapidly, limited
only by the exposure time fidelity of the camera. Potential applications range
from soft-glassy materials, to granular avalanches, to flowmetry of living
tissue.Comment: review - theory and experimen
What do implicit measures measure?
We identify several ongoing debates related to implicit measures, surveying prominent views and considerations in each debate. First, we summarize the debate regarding whether performance on implicit measures is explained by conscious or unconscious representations. Second, we discuss the cognitive structure of the operative constructs: are they associatively or propositionally structured? Third, we review debates whether performance on implicit measures reflects traits or states. Fourth, we discuss the question of whether a person’s performance on an implicit measure reflects characteristics of the person who is taking the test or characteristics of the situation in which the person is taking the test. Finally, we survey the debate about the relationship between implicit measures and (other kinds of) behavior
Hydro-without-Hydro Framework for Simulations of Black Hole-Neutron Star Binaries
We introduce a computational framework which avoids solving explicitly
hydrodynamic equations and is suitable to study the pre-merger evolution of
black hole-neutron star binary systems. The essence of the method consists of
constructing a neutron star model with a black hole companion and freezing the
internal degrees of freedom of the neutron star during the course of the
evolution of the space-time geometry. We present the main ingredients of the
framework, from the formulation of the problem to the appropriate computational
techniques to study these binary systems. In addition, we present numerical
results of the construction of initial data sets and evolutions that
demonstrate the feasibility of this approach.Comment: 16 pages, 7 figures. To appear in the Classical and Quantum Gravity
special issue on Numerical Relativit
Dynamics of test bodies with spin in de Sitter spacetime
We study the motion of spinning test bodies in the de Sitter spacetime of
constant positive curvature. With the help of the 10 Killing vectors, we derive
the 4-momentum and the tensor of spin explicitly in terms of the spacetime
coordinates. However, in order to find the actual trajectories, one needs to
impose the so-called supplementary condition. We discuss the dynamics of
spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma
- …