17,325 research outputs found

    Higher Spin BRS Cohomology of Supersymmetric Chiral Matter in D=4

    Full text link
    We examine the BRS cohomology of chiral matter in N=1N=1, D=4D=4 supersymmetry to determine a general form of composite superfield operators which can suffer from supersymmetry anomalies. Composite superfield operators \Y_{(a,b)} are products of the elementary chiral superfields SS and \ov S and the derivative operators D_\a, \ov D_{\dot \b} and \pa_{\a \dot \b}. Such superfields \Y_{(a,b)} can be chosen to have `aa' symmetrized undotted indices \a_i and `bb' symmetrized dotted indices \dot \b_j. The result derived here is that each composite superfield \Y_{(a,b)} is subject to potential supersymmetry anomalies if aba-b is an odd number, which means that \Y_{(a,b)} is a fermionic superfield.Comment: 15 pages, CPT-TAMU-20/9

    The Last of the Finite Loop Amplitudes in QCD

    Get PDF
    We use on-shell recursion relations to determine the one-loop QCD scattering amplitudes with a massless external quark pair and an arbitrary number (n-2) of positive-helicity gluons. These amplitudes are the last of the unknown infrared- and ultraviolet-finite loop amplitudes of QCD. The recursion relations are similar to ones applied at tree level, but contain new non-trivial features corresponding to poles present for complex momentum arguments but absent for real momenta. We present the relations and the compact solutions to them, valid for all n. We also present compact forms for the previously-computed one-loop n-gluon amplitudes with a single negative helicity and the rest positive helicity.Comment: 45 pages, revtex, 7 figures, v2 minor correction

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Recursive Construction of Higgs-Plus-Multiparton Loop Amplitudes: The Last of the Phi-nite Loop Amplitudes

    Full text link
    We consider a scalar field, such as the Higgs boson H, coupled to gluons via the effective operator H tr G_{mu nu} G^{mu nu} induced by a heavy-quark loop. We treat H as the real part of a complex field phi which couples to the self-dual part of the gluon field-strength, via the operator phi tr G_{SD mu nu} G_{SD}^{mu nu}, whereas the conjugate field phi^dagger couples to the anti-self-dual part. There are three infinite sequences of amplitudes coupling phi to quarks and gluons that vanish at tree level, and hence are finite at one loop, in the QCD coupling. Using on-shell recursion relations, we find compact expressions for these three sequences of amplitudes and discuss their analytic properties.Comment: 63 pages, 7 figures; v2 references added; v3 minor typos corrected and note added; v4 fixed error in eq. (7.11) (lower limit of sum should be l=2, not l=3), also affecting eqs. (7.14), (8.20), (8.21), (8.27) and (8.28

    Unitarity Cuts with Massive Propagators and Algebraic Expressions for Coefficients

    Get PDF
    In the first part of this paper, we extend the d-dimensional unitarity cut method of hep-ph/0609191 to cases with massive propagators. We present formulas for integral reduction with which one can obtain coefficients of all pentagon, box, triangle and massive bubble integrals. In the second part of this paper, we present a detailed study of the phase space integration for unitarity cuts. We carry out spinor integration in generality and give algebraic expressions for coefficients, intended for automated evaluation.Comment: 33 pages. v2: notation modified. v3: typos fixe

    Multipole structure of current vectors in curved spacetime

    Get PDF
    A method is presented which allows the exact construction of conserved (i.e. divergence-free) current vectors from appropriate sets of multipole moments. Physically, such objects may be taken to represent the flux of particles or electric charge inside some classical extended body. Several applications are discussed. In particular, it is shown how to easily write down the class of all smooth and spatially-bounded currents with a given total charge. This implicitly provides restrictions on the moments arising from the smoothness of physically reasonable vector fields. We also show that requiring all of the moments to be constant in an appropriate sense is often impossible; likely limiting the applicability of the Ehlers-Rudolph-Dixon notion of quasirigid motion. A simple condition is also derived that allows currents to exist in two different spacetimes with identical sets of multipole moments (in a natural sense).Comment: 13 pages, minor changes, accepted to J. Math. Phy

    Bootstrapping One-Loop QCD Amplitudes with General Helicities

    Get PDF
    The recently developed on-shell bootstrap for computing one-loop amplitudes in non-supersymmetric theories such as QCD combines the unitarity method with loop-level on-shell recursion. For generic helicity configurations, the recursion relations may involve undetermined contributions from non-standard complex singularities or from large values of the shift parameter. Here we develop a strategy for sidestepping difficulties through use of pairs of recursion relations. To illustrate the strategy, we present sets of recursion relations needed for obtaining n-gluon amplitudes in QCD. We give a recursive solution for the one-loop n-gluon QCD amplitudes with three or four color-adjacent gluons of negative helicity and the remaining ones of positive helicity. We provide an explicit analytic formula for the QCD amplitude A_{6;1}(1^-,2^-,3^-,4^+,5^+,6^+), as well as numerical results for A_{7;1}(1^-,2^-,3^-,4^+,5^+,6^+,7^+), A_{8;1}(1^-,2^-,3^-,4^+,5^+,6^+,7^+,8^+), and A_{8;1}(1^-,2^-,3^-,4^-,5^+,6^+,7^+,8^+). We expect the on-shell bootstrap approach to have widespread applications to phenomenological studies at colliders.Comment: 77 pages, 17 figures; v2, corrected minor typos in text and small equation

    Immunofluorescent Examination of Biopsies from Long-Term Renal Allografts

    Get PDF
    Immunofluorescent examination of open renal biopsies revealed clear-cut glomerular localization of immunoglobulins not related clearly to the quality of donor-recipient histocompatibility in 19 of 34 renal allografts. The biopsies were obtained 18 to 31 months after transplantations primarily from related donors with a variable quality of histocompatibility match. IgG was the predominant immunoglobulin class fixed in 13 biopsies, and IgM in six. The pattern of immunoglobulin deposition was linear, connoting anti-GBM antibody in four of the 19; it was granular and discontinuous, connoting antigen–antibodycomplex deposits, in 13. An immune process may affect glomeruli of renal allografts by mechanisms comparable to those that cause glomerulonephritis in native kidneys. The transplant glomerulonephritis may represent a persistence of the same disease that originally destroyed the host kidneys or the consequence of a new humoral antibody response to allograft antigens. © 1970, Massachusetts Medical Society. All rights reserved

    Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects

    Full text link
    The inverse square law of gravity is poorly probed by experimental tests at distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and 11 spacecraft have shown an unmodeled acceleration directed toward the Sun which was not explained by any obvious spacecraft systematics, and occurred when at distances greater than 20 AUs from the Sun. If this acceleration represents a departure from Newtonian gravity or is indicative of an additional mass distribution in the outer solar system, it should be detectable in the orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from Newtonian gravity, we have selected a well observed sample of TNOs found orbiting between 20 and 100 AU from the Sun. By examining their orbits with modified orbital fitting software, we place tight limits on the perturbations of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro

    New Relations for Gauge-Theory Amplitudes

    Full text link
    We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between color-ordered partial amplitudes. We discuss applications to multi-loop calculations via the unitarity method. In particular, we illustrate the relations between different contributions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree amplitudes diagram by diagram, offering new insight into the structure of the KLT relations between gauge and gravity tree amplitudes. This can be used to obtain novel relations similar to the KLT ones. We expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.Comment: 40 pages, 7 figures, RevTex, v2 minor correction
    corecore