320 research outputs found

    Pharmacokinetic targeting of intravenous busulfan reduces conditioning regimen related toxicity following allogeneic hematopoietic cell transplantation for acute myelogenous leukemia

    Get PDF
    Optimal conditioning therapy for hematopoietic cell transplantation (HCT) in acute myelogenous leukemia (AML) remains undefined. We retrospectively compared outcomes of a consecutive series of 51 AML patients treated with oral busulfan (1 mg/kg every 6 hours for 4 days) and cyclophosphamide (60 mg/kg IV × 2 days) - (Bu/Cy) with 100 consecutive AML patients treated with pharmacokinetic targeted IV busulfan (AUC < 6000 μM/L*min per day × 4 days) and fludarabine (40 mg/m2 × 4 days) - (t-IV Bu/Flu). The Bu/Cy and t-IV Bu/Flu groups significantly differed according to donor relation, stem cell source, aGVHD prophylaxis, remission status, primary vs. secondary disease, median age, and % blasts prior to HCT (p < 0.01 for each). Conditioning with t-IV Bu/Flu reduced early toxicity including idiopathic pneumonia syndrome (IPS) and hepatic veno-occlusive disease (VOD). Additionally, the trajectory of early NRM (100 day: 16% vs. 3%, and1 year: 25% vs. 15% for Bu/Cy and t-IV Bu/Flu, respectively) favored t-IV Bu/Flu. Grade II-IV aGVHD (48% vs. 82%, p < 0.0001), as well as moderate/severe cGVHD (7% vs. 40%, p < 0.0001) differed between the Bu/Cy and t-IV Bu/Flu groups, due to the predominance of peripheral blood stem cells in the t-IV Bu/Flu group. Pharmacokinetic targeting of intravenous busulfan in combination with fludarabine is associated with reduced conditioning regimen related toxicity compared to oral busulfan and cyclophosphamide. However, multivariable analysis did not demonstrate significant differences in overall survival (p = 0.78) or non-relapse mortality (p = 0.6) according to conditioning regimen delivered

    Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach

    Get PDF
    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    British industrial relations pluralism in the era of neoliberalism

    Get PDF
    This article provides a broad overview of the pluralist tradition in UK industrial relations scholarship, identifying its defining characteristics and mapping its evolution in recent decades. It deals in turn with the following: the appreciation of the relative interests of workers and employers that lies at the heart of the pluralist frame of reference, the research agenda that flows from this understanding, pluralist conceptions of context and agency within industrial relations, the standards that pluralists habitually use when assessing the employment relationship, the targets and modes of critique that pluralists direct against intellectual opponents, and the prescriptions that pluralists offer for industrial relations reform. Throughout the article there is a focus on change within the pluralist tradition and the manner in which it has adapted to the hegemony of neoliberalism in the realms of both ideas and policy

    Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    Get PDF
    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells

    A Model of Mindful Parenting: Implications for Parent–Child Relationships and Prevention Research

    Get PDF
    This paper introduces a model of “mindful parenting” as a framework whereby parents intentionally bring moment-to-moment awareness to the parent–child relationship. This is done by developing the qualities of listening with full attention when interacting with their children, cultivating emotional awareness and self-regulation in parenting, and bringing compassion and nonjudgmental acceptance to their parenting interactions. First, we briefly outline the theoretical and empirical literature on mindfulness and mindfulness-based interventions. Next, we present an operational definition of mindful parenting as an extension of mindfulness to the social context of parent–child relationships. We discuss the implications of mindful parenting for the quality of parent–child relationships, particularly across the transition to adolescence, and we review the literature on the application of mindfulness in parenting interventions. We close with a synopsis of our own efforts to integrate mindfulness-based intervention techniques and mindful parenting into a well-established, evidence-based family prevention program and our recommendations for future research on mindful parenting interventions

    Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development

    Get PDF
    The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing.L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0-75 microM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration.Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies
    corecore