6 research outputs found
Recommended from our members
Adrenergic Receptors in Individual Ventricular Myocytes
RationaleIt is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), β1, β2, β3, α1A, and α1B. The β1 and β2 are thought to be the dominant myocyte ARs.ObjectiveQuantify the 5 cardiac ARs in individual ventricular myocytes.Methods and resultsWe studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and β1 and β2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the β1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The β2 and β3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total β-ARs were β2 and 20% were β3, both mainly in nonmyocytes.ConclusionThe dominant ventricular myocyte ARs present in all cells are the β1 and α1B. The β2 and β3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with β1 and α1B only; 60% that also have the α1A; and 5% each that also have the β2 or β3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms
Adrenergic Receptors in Individual Ventricular Myocytes
RationaleIt is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), β1, β2, β3, α1A, and α1B. The β1 and β2 are thought to be the dominant myocyte ARs.ObjectiveQuantify the 5 cardiac ARs in individual ventricular myocytes.Methods and resultsWe studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and β1 and β2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the β1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The β2 and β3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total β-ARs were β2 and 20% were β3, both mainly in nonmyocytes.ConclusionThe dominant ventricular myocyte ARs present in all cells are the β1 and α1B. The β2 and β3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with β1 and α1B only; 60% that also have the α1A; and 5% each that also have the β2 or β3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms