13 research outputs found

    Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo

    Get PDF
    Plasmodium knowlesi is typically found in nature in macaques and has recently been recognized as the fifth species of Plasmodium causing malaria in human populations in south-east Asia. A case of knowlesi malaria is described in a Swedish man, who became ill after returning from a short visit to Malaysian Borneo in October 2006. His P. knowlesi infection was not detected using a rapid diagnostic test for malaria, but was confirmed by PCR and molecular characterization. He responded rapidly to treatment with mefloquine. Evaluation of rapid diagnostic kits with further samples from knowlesi malaria patients are necessary, since early identification and appropriate anti-malarial treatment of suspected cases are essential due to the rapid growth and potentially life-threatening nature of P. knowlesi. Physicians should be aware that knowlesi infection is an important differential diagnosis in febrile travellers, with a recent travel history to forested areas in south-east Asia, including short-term travellers who tested negative with rapid diagnostic tests

    A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The misdiagnosis of <it>Plasmodium knowlesi </it>by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for <it>P. knowlesi</it>, that can be used in a previously described TaqMan real-time PCR assay for detection of <it>Plasmodium </it>spp., and <it>Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae </it>and <it>Plasmodium ovale</it>, was designed and validated against clinical samples.</p> <p>Methods</p> <p>A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the <it>P. knowlesi </it>small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing <it>P. knowlesi </it>DNA and genomic DNA of <it>P. falciparum, P. knowlesi, P. malariae, P. ovale </it>and <it>P. vivax </it>isolated from clinical samples. DNA samples of the simian malaria parasites <it>Plasmodium cynomolgi </it>and <it>Plasmodium inui </it>that can infect humans under experimental conditions were also examined together with human DNA samples.</p> <p>Results</p> <p>Analytical sensitivity of the <it>P. knowlesi</it>-specific assay was 10 copies/ÎĽL and quantitation was linear over a range of 10-10<sup>6 </sup>copies. The sensitivity of the assay is equivalent to nested PCR and <it>P. knowlesi </it>DNA was detected from all 40 clinical <it>P. knowlesi </it>specimens, including one from a patient with a parasitaemia of three parasites/ÎĽL of blood. No cross-reactivity was observed with 67 <it>Plasmodium </it>DNA samples (31 <it>P. falciparum</it>, 23 <it>P. vivax</it>, six <it>P. ovale</it>, three <it>P. malariae</it>, one <it>P. malariae/P. ovale</it>, one <it>P. falciparum/P. malariae, one P. inui and one P. cynomolgi) </it>and four samples of human DNA.</p> <p>Conclusions</p> <p>This test demonstrated excellent sensitivity and specificity, and adds <it>P. knowlesi </it>to the repertoire of <it>Plasmodium </it>targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.</p

    Molecular epidemiology and population genomics of Plasmodium knowlesi.

    Get PDF
    Molecular epidemiology has been central to uncovering P. knowlesi as an important cause of human malaria in Southeast Asia, and to understanding the complex nature of this zoonosis. Species-specific parasite detection and characterization of sequences were vital to show that P. knowlesi was distinct from the human parasite species that had been presumed to cause all malaria. With established sensitive and specific molecular detection tools, surveys subsequently indicated the distribution of P. knowlesi infections in humans, wild primate reservoir host species, and mosquito vector species. The importance of studying P. knowlesi genetic polymorphism was indicated initially by analysing a few nuclear gene loci as well as the mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-genome sequencing. Different human infections generally have unrelated P. knowlesi genotypes, acquired from the diverse local parasite reservoirs in macaques. However, individual human infections are usually less genetically complex than those of wild macaques which experience more frequent superinfection with different P. knowlesi genotypes. Multi-locus analyses have revealed deep population subdivisions within P. knowlesi, which are structured both geographically and in relation to different macaque reservoir host species. Simplified genotypic discrimination assays now enable efficient large-scale surveillance of the sympatric P. knowlesi subpopulations within Malaysian Borneo. The whole-genome sequence analyses have also identified loci under recent positive natural selection in the P. knowlesi genome, with evidence that different loci are affected in different populations. These provide a foundation to understand recent adaptation of the zoonotic parasite populations, and to track and interpret future changes as they emerge

    Population Genomic Structure and Recent Evolution of Plasmodium knowlesi, Peninsular Malaysia.

    Get PDF
    Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia

    Contribution of Plasmodium knowlesi to Multispecies Human Malaria Infections in North Sumatera, Indonesia.

    Get PDF
    Background: As Indonesia works toward the goal of malaria elimination, information is lacking on malaria epidemiology from some western provinces. As a basis for studies of antimalarial efficacy, we set out to survey parasite carriage in 3 communities in North Sumatera Province. Methods: A combination of active and passive detection of infection was carried out among communities in Batubara, Langkat, and South Nias regencies. Finger-prick blood samples from consenting individuals of all ages provided blood films for microscopic examination and blood spots on filter paper. Plasmodium species were identified using nested polymerase chain reaction (PCR) of ribosomal RNA genes and a novel assay that amplifies a conserved sequence specific for the sicavar gene family of Plasmodium knowlesi. Results: Of 3731 participants, 614 (16.5%) were positive for malaria parasites by microscopy. PCR detected parasite DNA in samples from 1169 individuals (31.3%). In total, 377 participants (11.8%) harbored P. knowlesi. Also present were Plasmodium vivax (14.3%), Plasmodium falciparum (10.5%) and Plasmodium malariae (3.4%). Conclusions: Amplification of sicavar is a specific and sensitive test for the presence of P. knowlesi DNA in humans. Subpatent and asymptomatic multispecies parasitemia is relatively common in North Sumatera, so PCR-based surveillance is required to support control and elimination activities

    Clinical and parasitological response to oral chloroquine and primaquine in uncomplicated human Plasmodium knowlesi infections

    Get PDF
    BACKGROUND: Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs. METHODS: A prospective observational study of oral chloroquine and primaquine therapy was conducted in consecutive patients admitted to Kapit Hospital, Sarawak, Malaysian Borneo with PCR-confirmed single P. knowlesi infections. These patients were given oral chloroquine for three days, and at 24 hours oral primaquine was administered for two consecutive days, primarily as a gametocidal agent. Clinical and parasitological responses were recorded at 6-hourly intervals during the first 24 hours, daily until discharge and then weekly to day 28. Vivax malaria patients were studied as a comparator group. RESULTS: Of 96 knowlesi malaria patients who met the study criteria, 73 were recruited to an assessment of the acute response to treatment and 60 completed follow-up over 28 days. On admission, the mean parasite stage distributions were 49.5%, 41.5%, 4.0% and 5.6% for early trophozoites, late trophozoites, schizonts and gametocytes respectively. The median fever clearance time was 26.5 [inter-quartile range 16-34] hours. The mean times to 50% (PCT50) and 90% (PCT90) parasite clearance were 3.1 (95% confidence intervals [CI] 2.8-3.4) hours and 10.3 (9.4-11.4) hours. These were more rapid than in a group of 23 patients with vivax malaria 6.3 (5.3-7.8) hours and 20.9 (17.6-25.9) hours; P = 0.02). It was difficult to assess the effect of primaquine on P. knowlesi parasites, due to the rapid anti-malarial properties of chloroquine and since primaquine was administered 24 hours after chloroquine. No P. knowlesi recrudescences or re-infections were detected by PCR. CONCLUSIONS: Chloroquine plus primaqine is an inexpensive and highly effective treatment for uncomplicated knowlesi malaria infections in humans and there is no evidence of drug resistance. Further studies using alternative anti-malarial drugs, including artemisinin derivatives, would be desirable to define optimal management strategies for P. knowlesi

    Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species.

    Get PDF
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system

    Efficient Surveillance of Plasmodium knowlesi Genetic Subpopulations, Malaysian Borneo, 2000-2018.

    Get PDF
    Population genetic analysis revealed that Plasmodium knowlesi infections in Malaysian Borneo are caused by 2 divergent parasites associated with long-tailed (cluster 1) and pig-tailed (cluster 2) macaques. Because the transmission ecology is likely to differ for each macaque species, we developed a simple genotyping PCR to efficiently distinguish between and survey the 2 parasite subpopulations. This assay confirmed differences in the relative proportions in areas of Kapit division of Sarawak state, consistent with multilocus microsatellite analyses. Analyses of 1,204 human infections at Kapit Hospital showed that cluster 1 caused approximately two thirds of cases with no significant temporal changes from 2000 to 2018. We observed an apparent increase in overall numbers in the most recent 2 years studied, driven mainly by increased cluster 1 parasite infections. Continued monitoring of the frequency of different parasite subpopulations and correlation with environmental alterations are necessary to determine whether the epidemiology will change substantially

    Seroepidemiological surveillance, community perceptions and associated risk factors of malaria exposure among forest-goers in Northeastern Thailand.

    Get PDF
    Malaria remains a major public health challenge in Thailand. Continuous assessment and understanding of the behavior and perceptions related to malaria exposure in the high-risk group are necessary to achieve the elimination goal. This study aimed to investigate the parasite prevalence, seroprevalence rate, knowledge, attitudes, and practices (KAP), and malaria risk factors in rural communities living close to a forested area in the northeastern part of Thailand. A community-based cross-sectional survey was conducted in three forest-goer communities (i.e., Ban Khok, Ban Koh, and Dong Yang) located in Khamcha-i district, Mukdahan Province, Thailand, from July to August 2019. Demographic, socioeconomic information and KAP data were collected using a structured questionnaire. Parasite prevalence was determined by microscopy. Seroprevalence was determined via ELISA using two Plasmodium falciparum (PfAMA-1 and PfMSP-119) and two Plasmodium vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analyzed using a reversible catalytic model to calculate seroconversion rate (SCR). Malaria parasite was not detected in any of the 345 participants. The overall malaria seroprevalence was 72.2% for PfAMA-1, 18.8% for PfMSP-119, 32.5% for PvAMA-1, and 4.4% for PvMSP-119. The proportion of seroprevalence for P. falciparum and P. vivax antigens was significantly highest in Ban Koh (35.1%, P < 0.001) and Don Yang (18.8%, P < 0.001), respectively. For all parasite antigens except PvMSP-119, the proportion of seropositive individuals significantly increased with age (P < 0.001). Based on the SCRs, there was a higher level of P. falciparum transmission than P. vivax. Regarding KAP, almost all respondents showed adequate knowledge and awareness about malaria. Nevertheless, significant effort is needed to improve positive attitudes and practices concerning malaria prevention measures. Multivariate regression analyses showed that living in Ban Koh was associated with both P. falciparum (adjusted odds ratio [aOR] 12.87, P < 0.001) and P. vivax (aOR 9.78, P < 0.001) seropositivities. We also found significant associations between age and seropositivity against P. falciparum and P. vivax antigens. The data suggest that seroepidemiological surveillance using AMA-1 and MSP-119 antigens may provide further evidence to reconstruct malaria exposure history. The absence of weak evidence of recent malaria transmission in Mukdahan Province is promising in the context of the disease elimination program
    corecore