124 research outputs found

    Thermal Behaviour of AP Based CMDB Propellants with Stabilizers

    Get PDF
    Stability test results and DTA studies indicate the superiority of molecular sieve (MS) over zirconium silicate (ZrSiO/sub 4/) as the stabilizer for a composite modified double base (CMDB) system. Shelf life as computed from autoignition test results was 30 years for MS-based composition which is almost double the life of ZrSiO/sub 4/, but approximately half the life of resorcinol-based composition which was used as a reference. Higher stabilizing effect of MS as compared to ZrSiO/sub 4/ has been explained on the basis of the presence of channels and cavities in its structure, which makes it an effective adsorbent for decomposition catalysing species. Poor stabilization capability of m-dinitrobenzene as compared to resorcinol suggests the catalytic involvement of acidic decomposition products of nitrate esters in autodecomposition process of CMDB propellants

    Polyurethane Based Inhibition for High Flame Temperature Nitramine Based Composite Modified Double Base propellant

    Get PDF
    The findings for polypropylene glycol (PPG) and hydroxyl-terminated polybutadiene (HTPB)-based inhibition systems are reported. These findings established that the inhibition system comprising HTPB-IPDI-IDP binder and Sb/sub 2/O/sub 3/-C black filler is most suitable for advanced nitramine-based composite modified double-base propellants in terms of mechanical properties and processibility. The promising composition was characterised for glass-transition behaviour and propellant-inhibition bond strength. Propellant grains inhibited with selected formulations were subjected to static evaluation at extreme temperatures and limited aging studies to obtain data of practical value

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    The Belle II SVD detector

    Get PDF
    The Silicon Vertex Detector (SVD) is one of the main detectors in the Belle II experiment at KEK, Japan. In combination with a pixel detector, the SVD determines precise decay vertex and low-momentum track reconstruction. The SVD ladders are being developed at several institutes. For the development of the tracking algorithm as well as the performance estimation of the ladders, beam tests for the ladders were performed. We report an overview of the SVD development, its performance measured in the beam test, and the prospect of its assembly and commissioning until installation

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Protective Immunity Induced with the RTS,S/AS Vaccine Is Associated with IL-2 and TNF-α Producing Effector and Central Memory CD4+ T Cells

    Get PDF
    A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (TE/EM) and/or central memory (TCM) CD4+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both TE/EM and TCM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4+ TE/EM cells and of CD4+ TCM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4+ TE/EM cells and of CD4+ TE/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both TE/EM and TCM cells are major producers of IL-2

    The Acute Environment, Rather than T Cell Subset Pre-Commitment, Regulates Expression of the Human T Cell Cytokine Amphiregulin

    Get PDF
    Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses

    Host Differences in Influenza-Specific CD4 T Cell and B Cell Responses Are Modulated by Viral Strain and Route of Immunization

    Get PDF
    The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-Îł, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-Îł-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-Îł-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses

    Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    Get PDF
    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of View the MathML source8 71035cm 122s 121 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors
    • …
    corecore