1,673 research outputs found

    Higher-order mesoscopic fluctuations in quantum wires: Conductance and current cumulants

    Full text link
    We study conductance cumulants >> and current cumulants CjC_j related to heat and electrical transport in coherent mesoscopic quantum wires near the diffusive regime. We consider the asymptotic behavior in the limit where the number of channels and the length of the wire in the units of the mean free path are large but the bare conductance is fixed. A recursion equation unifying the descriptions of the standard and Bogoliubov--de Gennes (BdG) symmetry classes is presented. We give values and come up with a novel scaling form for the higher-order conductance cumulants. In the BdG wires, in the presence of time-reversal symmetry, for the cumulants higher than the second it is found that there may be only contributions which depend nonanalytically on the wire length. This indicates that diagrammatic or semiclassical pictures do not adequately describe higher-order spectral correlations. Moreover, we obtain the weak-localization corrections to CjC_j with j≤10j\le 10.Comment: 7 page

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    Loop quantization of spherically symmetric midi-superspaces

    Get PDF
    We quantize the exterior of spherically symmetric vacuum space-times using a midi-superspace reduction within the Ashtekar new variables. Through a partial gauge fixing we eliminate the diffeomorphism constraint and are left with a Hamiltonian constraint that is first class. We complete the quantization in the loop representation. We also use the model to discuss the issues that will arise in more general contexts in the ``uniform discretization'' approach to the dynamics.Comment: 18 pages, RevTex, no figures, some typos corrected, published version, for some reason a series of figures were incorrectly added to the previous versio

    Regularized Hamiltonians and Spinfoams

    Full text link
    We review a recent proposal for the regularization of the scalar constraint of General Relativity in the context of LQG. The resulting constraint presents strengths and weaknesses compared to Thiemann's prescription. The main improvement is that it can generate the 1-4 Pachner moves and its matrix elements contain 15j Wigner symbols, it is therefore compatible with the spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled because the nodes that the constraint creates have volume.Comment: 4 pages, based on a talk given at Loops '11 in Madrid, to appear in Journal of Physics: Conference Series (JPCS

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Noncommutative Complex Scalar Field and Casimir Effect

    Full text link
    A noncommutative complex scalar field, satisfying the deformed canonical commutation relations proposed by Carmona et al. [27]-[31], is constructed. Using these noncommutative deformed canonical commutation relations, a model describing the dynamics of the noncommutative complex scalar field is proposed. The noncommutative field equations are solved, and the vacuum energy is calculated to the second order in the parameter of noncommutativity. As an application to this model, the Casimir effect, due to the zero point fluctuations of the noncommutative complex scalar field, is considered. It turns out that in spite of its smallness, the noncommutativity gives rise to a repulsive force at the microscopic level, leading to a modifed Casimr potential with a minimum at the point amin= racine(5/84){\pi}{\theta}.Comment: Revtex style, 28 page

    Entanglement, measurement, and conditional evolution of the Kondo singlet interacting with a mesoscopic detector

    Full text link
    We investigate various aspects of the Kondo singlet in a quantum dot (QD) electrostatically coupled to a mesoscopic detector. The two subsystems are represented by an entangled state between the Kondo singlet and the charge-dependent detector state. We show that the phase-coherence of the Kondo singlet is destroyed in a way that is sensitive to the charge-state information restored both in the magnitude and in the phase of the scattering coefficients of the detector. We also introduce the notion of the `conditional evolution' of the Kondo singlet under projective measurement on the detector. Our study reveals that the state of the composite system is disentangled upon this measurement. The Kondo singlet evolves into a particular state with a fixed number of electrons in the quantum dot. Its relaxation time is shown to be sensitive only to the QD-charge dependence of the transmission probability in the detector, which implies that the phase information is erased in this conditional evolution process. We discuss implications of our observations in view of the possible experimental realization.Comment: Focus issue on "Interference in Mesoscopic Systems" of New J. Phy

    Area-angle variables for general relativity

    Full text link
    We introduce a modified Regge calculus for general relativity on a triangulated four dimensional Riemannian manifold where the fundamental variables are areas and a certain class of angles. These variables satisfy constraints which are local in the triangulation. We expect the formulation to have applications to classical discrete gravity and non-perturbative approaches to quantum gravity.Comment: 7 pages, 1 figure. v2 small changes to match published versio

    Effective action for the order parameter of the deconfinement transition of Yang-Mills theories

    Full text link
    The effective action for the Polyakov loop serving as an order parameter for deconfinement is obtained in one-loop approximation to second order in a derivative expansion. The calculation is performed in d≥4d\geq 4 dimensions, mostly referring to the gauge group SU(2). The resulting effective action is only capable of describing a deconfinement phase transition for d>dcr≃7.42d>d_{\text{cr}}\simeq 7.42. Since, particularly in d=4d=4, the system is strongly governed by infrared effects, it is demonstrated that an additional infrared scale such as an effective gluon mass can change the physical properties of the system drastically, leading to a model with a deconfinement phase transition.Comment: 23 pages, 4 figures, minor improvements, version to appear in PR
    • …
    corecore