1,439 research outputs found

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page

    Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order

    Full text link
    In our companion paper we identified a complete set of manifestly gauge-invariant observables for general relativity. This was possible by coupling the system of gravity and matter to pressureless dust which plays the role of a dynamically coupled observer. The evolution of those observables is governed by a physical Hamiltonian and we derived the corresponding equations of motion. Linear perturbation theory of those equations of motion around a general exact solution in terms of manifestly gauge invariant perturbations was then developed. In this paper we specialise our previous results to an FRW background which is also a solution of our modified equations of motion. We then compare the resulting equations with those derived in standard cosmological perturbation theory (SCPT). We exhibit the precise relation between our manifestly gauge-invariant perturbations and the linearly gauge-invariant variables in SCPT. We find that our equations of motion can be cast into SCPT form plus corrections. These corrections are the trace that the dust leaves on the system in terms of a conserved energy momentum current density. It turns out that these corrections decay, in fact, in the late universe they are negligible whatever the value of the conserved current. We conclude that the addition of dust which serves as a test observer medium, while implying modifications of Einstein's equations without dust, leads to acceptable agreement with known results, while having the advantage that one now talks about manifestly gauge-invariant, that is measurable, quantities, which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure

    Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory

    Get PDF
    In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non -- Abelean group SU(2) by the Abelean group U(1)3U(1)^3 in the calculations. The mere reason why that substitution was performed at all is that in the non -- Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in â„Ź\hbar with error control. That is, in particular matrix elements of fractional powers of the volume operator can be computed with extremely high precision for sufficiently large power of â„Ź\hbar in the â„Ź\hbar expansion. With this new tool, the non -- Abelean calculation, although technically more involved, is then exactly analogous to the Abelean calculation, thus justifying the Abelean analysis in retrospect. The results of this paper turn AQG into a calculational discipline

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Quantum Spin Dynamics VIII. The Master Constraint

    Get PDF
    Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non -- Lie -- algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self -- adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.Comment: 19p, no figure

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    Emergent diffeomorphism invariance in a discrete loop quantum gravity model

    Get PDF
    Several approaches to the dynamics of loop quantum gravity involve discretizing the equations of motion. The resulting discrete theories are known to be problematic since the first class algebra of constraints of the continuum theory becomes second class upon discretization. If one treats the second class constraints properly, the resulting theories have very different dynamics and number of degrees of freedom than those of the continuum theory. It is therefore questionable how these theories could be considered a starting point for quantization and the definition of a continuum theory through a continuum limit. We show explicitly in a model that the {\em uniform discretizations} approach to the quantization of constrained systems overcomes these difficulties. We consider here a simple diffeomorphism invariant one dimensional model and complete the quantization using {\em uniform discretizations}. The model can be viewed as a spherically symmetric reduction of the well known Husain--Kucha\v{r} model of diffeomorphism invariant theory. We show that the correct quantum continuum limit can be satisfactorily constructed for this model. This opens the possibility of treating 1+1 dimensional dynamical situations of great interest in quantum gravity taking into account the full dynamics of the theory and preserving the space-time covariance at a quantum level.Comment: 12 pages, Revte

    Loop quantization of spherically symmetric midi-superspaces

    Get PDF
    We quantize the exterior of spherically symmetric vacuum space-times using a midi-superspace reduction within the Ashtekar new variables. Through a partial gauge fixing we eliminate the diffeomorphism constraint and are left with a Hamiltonian constraint that is first class. We complete the quantization in the loop representation. We also use the model to discuss the issues that will arise in more general contexts in the ``uniform discretization'' approach to the dynamics.Comment: 18 pages, RevTex, no figures, some typos corrected, published version, for some reason a series of figures were incorrectly added to the previous versio

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page
    • …
    corecore