144 research outputs found

    Reduced Phase Space Quantization and Dirac Observables

    Full text link
    In her recent work, Dittrich generalized Rovelli's idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose a new way for how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables so generated and interesting representations of the latter will be those for which a suitable preferred subgroup is realized unitarily. We sketch how such a programme might look like for General Relativity. We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for General Relativity such that they are spatially diffeomorphism invariant. This has the important consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed Master constraint programme.Comment: 18 pages, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems

    Full text link
    This is the second paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we begin with the simplest examples: Finite dimensional models with a finite number of first or second class constraints, Abelean or non -- Abelean, with or without structure functions.Comment: 23 pages, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity IV. Free Field Theories

    Full text link
    This is the fourth paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. We now move on to free field theories with constraints, namely Maxwell theory and linearized gravity. Since the Master constraint involves squares of constraint operator valued distributions, one has to be very careful in doing that and we will see that the full flexibility of the Master Constraint Programme must be exploited in order to arrive at sensible results.Comment: 23 pages, no figure

    Quantum Spin Dynamics VIII. The Master Constraint

    Get PDF
    Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG) was launched which replaces the infinite number of Hamiltonian constraints by a single Master constraint. The MCP is designed to overcome the complications associated with the non -- Lie -- algebra structure of the Dirac algebra of Hamiltonian constraints and was successfully tested in various field theory models. For the case of 3+1 gravity itself, so far only a positive quadratic form for the Master Constraint Operator was derived. In this paper we close this gap and prove that the quadratic form is closable and thus stems from a unique self -- adjoint Master Constraint Operator. The proof rests on a simple feature of the general pattern according to which Hamiltonian constraints in LQG are constructed and thus extends to arbitrary matter coupling and holds for any metric signature. With this result the existence of a physical Hilbert space for LQG is established by standard spectral analysis.Comment: 19p, no figure

    Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory

    Get PDF
    In the two previous papers of this series we defined a new combinatorical approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that AQG reproduces the correct infinitesimal dynamics in the semiclassical limit, provided one incorrectly substitutes the non -- Abelean group SU(2) by the Abelean group U(1)3U(1)^3 in the calculations. The mere reason why that substitution was performed at all is that in the non -- Abelean case the volume operator, pivotal for the definition of the dynamics, is not diagonisable by analytical methods. This, in contrast to the Abelean case, so far prohibited semiclassical computations. In this paper we show why this unjustified substitution nevertheless reproduces the correct physical result: Namely, we introduce for the first time semiclassical perturbation theory within AQG (and LQG) which allows to compute expectation values of interesting operators such as the master constraint as a power series in â„Ź\hbar with error control. That is, in particular matrix elements of fractional powers of the volume operator can be computed with extremely high precision for sufficiently large power of â„Ź\hbar in the â„Ź\hbar expansion. With this new tool, the non -- Abelean calculation, although technically more involved, is then exactly analogous to the Abelean calculation, thus justifying the Abelean analysis in retrospect. The results of this paper turn AQG into a calculational discipline

    Testing the Master Constraint Programme for Loop Quantum Gravity V. Interacting Field Theories

    Full text link
    This is the final fifth paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. Here we consider interacting quantum field theories, specificlly we consider the non -- Abelean Gauss constraints of Einstein -- Yang -- Mills theory and 2+1 gravity. Interestingly, while Yang -- Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background independent quantum field theories such as Loop Quantum Gravity (LQG) this might become possible by working in a new, background independent representation.Comment: 20 pages, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    Full text link
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order â„Ź2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to â„Ź\hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.Comment: 33 pages, no figure

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    No full text
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order â„Ź2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to â„Ź\hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction

    Testing the Master Constraint Programme for Loop Quantum Gravity V. Interacting Field Theories

    Get PDF
    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein–Yang–Mills theory and 2 + 1 gravity. Interestingly, while Yang–Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity
    • …
    corecore