4,480 research outputs found

    Towards a more balanced understanding of motor control systems

    Get PDF
    Roberts's book provides a reasonably thorough guide to the physiology and biomechanics of balance, unfortunately the discussion of the neural and cognitive aspects of motor control is less satisfactory. We propose that Roberts's statement of the problem of balance control should be extended to include control of non-equilibrium states, and we discuss sensorimotor calibration and integration in the context of maturation of the organism.Peer reviewe

    Spectral correlations in systems undergoing a transition from periodicity to disorder

    Get PDF
    We study the spectral statistics for extended yet finite quasi 1-d systems which undergo a transition from periodicity to disorder. In particular we compute the spectral two-point form factor, and the resulting expression depends on the degree of disorder. It interpolates smoothly between the two extreme limits -- the approach to Poissonian statistics in the (weakly) disordered case, and the universal expressions derived for the periodic case. The theoretical results agree very well with the spectral statistics obtained numerically for chains of chaotic billiards and graphs.Comment: 16 pages, Late

    Reduced Phase Space Quantization and Dirac Observables

    Full text link
    In her recent work, Dittrich generalized Rovelli's idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose a new way for how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables so generated and interesting representations of the latter will be those for which a suitable preferred subgroup is realized unitarily. We sketch how such a programme might look like for General Relativity. We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for General Relativity such that they are spatially diffeomorphism invariant. This has the important consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed Master constraint programme.Comment: 18 pages, no figure

    Gauge invariant perturbations around symmetry reduced sectors of general relativity: applications to cosmology

    Get PDF
    We develop a gauge invariant canonical perturbation scheme for perturbations around symmetry reduced sectors in generally covariant theories, such as general relativity. The central objects of investigation are gauge invariant observables which encode the dynamics of the system. We apply this scheme to perturbations around a homogeneous and isotropic sector (cosmology) of general relativity. The background variables of this homogeneous and isotropic sector are treated fully dynamically which allows us to approximate the observables to arbitrary high order in a self--consistent and fully gauge invariant manner. Methods to compute these observables are given. The question of backreaction effects of inhomogeneities onto a homogeneous and isotropic background can be addressed in this framework. We illustrate the latter by considering homogeneous but anisotropic Bianchi--I cosmologies as perturbations around a homogeneous and isotropic sector.Comment: 39 pages, 1 figur

    Holographic description of boundary gravitons in (3+1) dimensions

    Full text link
    Gravity is uniquely situated in between classical topological field theories and standard local field theories. This can be seen in the the quasi-local nature of gravitational observables, but is nowhere more apparent than in gravity's holographic formulation. Holography holds promise for simplifying computations in quantum gravity. While holographic descriptions of three-dimensional spacetimes and of spacetimes with a negative cosmological constant are well-developed, a complete boundary description of zero curvature, four-dimensional spacetime is not currently available. Building on previous work in three-dimensions, we provide a new route to four-dimensional holography and its boundary gravitons. Using Regge calculus linearized around a flat Euclidean background with the topology of a solid hyper-torus, we obtain the effective action for a dual boundary theory which describes the dynamics of the boundary gravitons. Remarkably, in the continuum limit and at large radii this boundary theory is local and closely analogous to the corresponding result in three-dimensions. The boundary effective action has a degenerate kinetic term that leads to singularities in the one-loop partition function that are independent of the discretization. These results establish a rich boundary dynamics for four-dimensional flat holography.Comment: 43 pages, 3 figures, 1 tabl

    Curved planar quantum wires with Dirichlet and Neumann boundary conditions

    Full text link
    We investigate the discrete spectrum of the Hamiltonian describing a quantum particle living in the two-dimensional curved strip. We impose the Dirichlet and Neumann boundary conditions on opposite sides of the strip. The existence of the discrete eigenvalue below the essential spectrum threshold depends on the sign of the total bending angle for the asymptotically straight strips.Comment: 7 page

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Revisiting On-Line Discussion as Practice for Reflective Thinking in Three Sequential Classes

    Full text link
    In a previous study, the authors questioned the potential of an on-line environment for increasing productive reflection in three sequential education classes. Of their findings, the issue of consistency stood out as particularly perplexing, namely, why did students exhibit high level reflections sometimes, but not all the time, in an on-line environment? In this follow-up study, the authors question whether in-class reflections coupled with on-line prompts could yield consistently high level pre-service teacher reflections, as measured by individual and class progress over time. This study also examines perceived relationships between the length of a student\u27s reflection and its productivity, as well as a student\u27s depth of focus and productivity. Using the same scoring approach as our previous study, our discussion of the results examines the usefulness of on-line environments for promoting consistently high level pre-service teacher reflection

    Using Technology to Develop Preservice Teachers\u27 Reflective Thinking

    Full text link
    Developing high-level reflection skills proves troublesome for some preservice teachers. To examine the potential of an online environment for increasing productive reflection, students in three sequential undergraduate education classes responded to regular online prompts. We coded student comments for productive and unproductive reflection, knowledge integration, and analysis of the four aspects of teaching (learners and learning, subject matter knowledge, assessment and instruction ) as described by Davis, Bain, & Harrington (2001). We adapted a scoring approach recommended by Davis & Linn, (2000); Davis (2003) to analyze what aspects of teaching preservice teachers included, emphasized, and integrated when they reflected on their own beliefs about teaching. Discussion examines the utility of online environments for producing productive preservice teacher reflection

    A perturbative approach to Dirac observables and their space-time algebra

    Full text link
    We introduce a general approximation scheme in order to calculate gauge invariant observables in the canonical formulation of general relativity. Using this scheme we will show how the observables and the dynamics of field theories on a fixed background or equivalently the observables of the linearized theory can be understood as an approximation to the observables in full general relativity. Gauge invariant corrections can be calculated up to an arbitrary high order and we will explicitly calculate the first non--trivial correction. Furthermore we will make a first investigation into the Poisson algebra between observables corresponding to fields at different space--time points and consider the locality properties of the observables.Comment: 23 page
    • …
    corecore