9,667 research outputs found

    Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    Get PDF
    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number

    Further comparison of wind tunnel and airplane acoustic data for advanced design high speed propeller models

    Get PDF
    Comparisons were made between the SR-2 and SR-3 model propeller noise data taken in the NASA 8-by-6 wind tunnel, in the United Technologies Research Center (UTRC) anechoic tunnel, and with boom and fuselage microphones on the NASA Jetstar airplane. Plots of peak blade passage tone noise versus helical tip Mach number generally showed good agreement. The levels of the airplane fuselage data were somewhat lower than the boom data by an approximately uniform value. The curve shapes were similar except for the UTRC data which was flatter than the other sets. This was attributed to the UTRC data being taken at constant power while the other data were taken at constant advance ratio. General curves of the peak blade passage tone versus helical tip Mach number fit through all the data are also presented. Directivity shape comparisons at the cruise condition were similar for the airplane and 8-by-6 tunnel data. The UTRC data peaked farther forward but, when an angle correction was made for the different axial Mach number used in the UTRC tests, the shape was similar to the others. The general agreement of the data from the four configurations enables the formation of a good consensus of the noise from these propellers

    Feasibility of wing shielding of the airplane interior from the shock noise generated by supersonic tip speed propellers

    Get PDF
    A high tip speed turboprop is being considered as a future energy conservative airplane. The high tip speed of the propeller, combined with the speed of the airplane, results in supersonic relative flow on the propeller tips. These supersonic blade sections could generate noise that is a cabin environment problem. The feasibility of using wing shielding to lessen the impact of this supersonic propeller noise was investigated. An analytical model is chosen which considers that shock waves are associated with the propeller tip flow and indicates how they would be prevented from impinging on the airplane fuselage. An example calculation is performed where a swept wing is used to shield the fuselage from significant portions of the propeller shock waves

    An evaluation of a simplified near field noise model for supersonic helical tip speed propellers

    Get PDF
    Existing propeller noise models are versatile and complex but require large computational times, therefore a simplified noise model that could be used to obtain quick noise estimates for these propellers was evaluated. This simplified noise model compared favorably with a complex model for a straight blade propeller and for swept propeller blades when the propeller sweep was properly considered. The simplified model can thus be used as an approximation to the complex model. Comparisons of either the complex or simplified noise models with the available noise data are not good for supersonic propeller helical tip speeds. By adjusting various constants in the simplified model, the noise estimates can be brought into the same range as the data at the propeller design point but the variation of the model with helical tip Mach number remains different than the data

    High-speed-propeller wind-tunnel aeroacoustic results

    Get PDF
    Some aerodynamic concepts are presented together with an explanation of how these concepts are applied to advanced propeller design. The unique features of this propulsion system are addressed with emphasis on the design concepts being considered for the high speed turboprop. More particular emphasis is given to the blade sweep, long blade chords, and the large number of blades

    A possible explanation for the present difference between linear noise theory and experimental data for supersonic helical tip speed propellers

    Get PDF
    High speed turboprops are attractive candidates for future aircraft because of their high propulsive efficiency. However, the noise of their propellers may create a cabin environment problem for the aircraft powered by these propellers. The noise of some propeller models was measured, and predictions of the noise using a method based on the Ffowcs Williams-Hawkins equation were made. The predictions and data agree well at lower helical tip Mach numbers but deviate above Mach 1.0. Some possible reasons why the theory does not predict the data and focuses on improvement of the aerodynamic inputs as the most likely remedy are investigated. In particular, it is proposed that an increase in the drag and a decrease in the lift near the tip of the blade where the majority of the noise is generated, is warranted in the input to the theory

    Interaction of rotor tip flow irregularities with stator vanes as a noise source

    Get PDF
    The role of the interaction of rotor tip flow irregularities (vortices and velocity defects) with downstream stator vanes is discussed as a possible fan noise mechanism. This is accomplished by: (1) indicating some of the mothods of formation of these flow irregularities; (2) observing how they would behave with respect to known noise behavior; and (3) attempting to compare the strength of the rotor tip flow irregularity mechanism with the strength of the more common rotor wake-stator mechanism. The rotor tip flow irregularity-stator interaction is indicated as being a probable inflight noise source

    Preliminary measurement of the noise from the 2/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    Get PDF
    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken into the NASA Lewis 8- by 6-Foot Wind Tunnel. The maximum blade passing tone decreases from the peak level when going to higher helical tip Mach numbers. This noise reduction points to the use of higher propeller speeds as a possible method to reduce airplane cabin noise while maintaining high flight speed and efficiency. Comparison of the SR-7A blade passing noise with the noise of the similarly designed SR-3 propeller shows good agreement as expected. The SR-7A propeller is slightly noisier than the SR-3 model in the plane of rotation at the cruise condition. Projections of the tunnel model data are made to the full-scale LAP propeller mounted on the test bed aircraft and compared with design predictions. The prediction method is conservative in the sense that it overpredicts the projected model data

    Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    Get PDF
    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet

    An estimate of the enroute noise of an advanced turboprop airplane NASA-TM-87302 E-3020 NAS 1.15:87302 HC A02/MF A01

    Get PDF
    The enroute noise of an Advanced Turboprop powered aircraft was estimated. The measured noise levels were roughly equivalent in annoyance to the noise 15.24 m from an automobile traveling at 80 km/h. It is felt that these levels would not illicit noise complaints from urban areas during the day but might be a slight annoyance in rural areas or in urban areas at night. Although it is not felt that the enroute noise is a major problem, it is indicated that a reduction in the enroute noise could improve the acceptability of advance turboprop airplanes
    corecore