7 research outputs found

    Gliotoxin Targets Nuclear NOTCH2 in Human Solid Tumor Derived Cell Lines In Vitro and Inhibits Melanoma Growth in Xenograft Mouse Model

    Get PDF
    Deregulation of NOTCH2 signaling is implicated in a wide variety of human neoplasias. The current concept of targeting NOTCH is based on using gamma secretase inhibitors (GSI) to regulate the release of the active NOTCH intracellular domain. However, the clinical outcome of GSI remains unsatisfactory. Therefore we analyzed human solid tumor derived cell lines for their nuclear NOTCH activity and evaluated the therapeutic potential of the NOTCH2 transactivation inhibitor gliotoxin in comparison to the representative GSI DAPT. Electrophoretic mobility shift assays (EMSA) were used as a surrogate method for the detection of NOTCH/CSL transcription factor complexes. The effect of gliotoxin on cell viability and its clinical relevance was evaluated in vitro and in a melanoma xenograft mouse model. Cell lines derived from melanoma (518A2), hepatocellular carcinoma (SNU398, HCC-3, Hep3B), and pancreas carcinoma (PANC1) express high amounts of nuclear NOTCH2. Gliotoxin efficiently induced apoptosis in these cell lines whereas the GSI DAPT was ineffective. The specificity of gliotoxin was demonstrated in the well differentiated nuclear NOTCH negative cell line Huh7, which was resistant to gliotoxin treatment in vitro. In xenotransplanted 518A2 melanomas, a single day dosing schedule of gliotoxin was well tolerated without any study limiting side effects. Gliotoxin significantly reduced the tumor volume in early (83 mm3 vs. 115 mm3, p = 0.008) as well as in late stage (218 mm3 vs. 576 mm3, p = 0.005) tumor models. In conclusion, NOTCH2 appears to be a key target of gliotoxin in human neoplasias and gliotoxin deserves further evaluation as a potential therapeutic agent in cancer management

    Gliotoxin Targets Nuclear NOTCH2 in Human Solid Tumor Derived Cell Lines In Vitro and Inhibits Melanoma Growth in Xenograft Mouse Model

    No full text
    Deregulation of NOTCH2 signaling is implicated in a wide variety of human neoplasias. The current concept of targeting NOTCH is based on using gamma secretase inhibitors (GSI) to regulate the release of the active NOTCH intracellular domain. However, the clinical outcome of GSI remains unsatisfactory. Therefore we analyzed human solid tumor derived cell lines for their nuclear NOTCH activity and evaluated the therapeutic potential of the NOTCH2 transactivation inhibitor gliotoxin in comparison to the representative GSI DAPT. Electrophoretic mobility shift assays (EMSA) were used as a surrogate method for the detection of NOTCH/CSL transcription factor complexes. The effect of gliotoxin on cell viability and its clinical relevance was evaluated in vitro and in a melanoma xenograft mouse model. Cell lines derived from melanoma (518A2), hepatocellular carcinoma (SNU398, HCC-3, Hep3B), and pancreas carcinoma (PANC1) express high amounts of nuclear NOTCH2. Gliotoxin efficiently induced apoptosis in these cell lines whereas the GSI DAPT was ineffective. The specificity of gliotoxin was demonstrated in the well differentiated nuclear NOTCH negative cell line Huh7, which was resistant to gliotoxin treatment in vitro. In xenotransplanted 518A2 melanomas, a single day dosing schedule of gliotoxin was well tolerated without any study limiting side effects. Gliotoxin significantly reduced the tumor volume in early (83 mm vs. 115 mm, p = 0.008) as well as in late stage (218 mm vs. 576 mm, p = 0.005) tumor models. In conclusion, NOTCH2 appears to be a key target of gliotoxin in human neoplasias and gliotoxin deserves further evaluation as a potential therapeutic agent in cancer management.(VLID)485878

    Targeting Nuclear NOTCH2 by Gliotoxin Recovers a Tumor-Suppressor NOTCH3 Activity in CLL

    No full text
    NOTCH signaling represents a promising therapeutic target in chronic lymphocytic leukemia (CLL). We compared the anti-neoplastic effects of the nuclear NOTCH2 inhibitor gliotoxin and the pan-NOTCH gamma-secretase inhibitor RO4929097 in primary CLL cells with special emphasis on the individual roles of the different NOTCH receptors. Gliotoxin rapidly induced apoptosis in all CLL cases tested, whereas RO4929097 exerted a variable and delayed effect on CLL cell viability. Gliotoxin-induced apoptosis was associated with inhibition of theNOTCH2/FCER2(CD23) axis together with concomitant upregulation of theNOTCH3/NR4A1axis. In contrast, RO4929097 downregulated theNOTCH3/NR4A1axis and counteracted the spontaneous and gliotoxin-induced apoptosis. On the cell surface, NOTCH3 and CD23 expression were mutually exclusive, suggesting that downregulation of NOTCH2 signaling is a prerequisite for NOTCH3 expression in CLL cells. ATAC-seq confirmed that gliotoxin targeted the canonical NOTCH signaling, as indicated by the loss of chromatin accessibility at the potential NOTCH/CSL site containing the gene regulatory elements. This was accompanied by a gain in accessibility at the NR4A1, NF kappa B, and ATF3 motifs close to the genes involved in B-cell activation, differentiation, and apoptosis. In summary, these data show that gliotoxin recovers a non-canonical tumor-suppressing NOTCH3 activity, indicating that nuclear NOTCH2 inhibitors might be beneficial compared to pan-NOTCH inhibitors in the treatment of CLL
    corecore