56 research outputs found

    Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate

    Get PDF
    Inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are channels responsible for calcium release from the endoplasmic reticulum (ER). We show that the anti-apoptotic protein Bcl-2 (either wild type or selectively localized to the ER) significantly inhibited InsP3-mediated calcium release and elevation of cytosolic calcium in WEHI7.2 T cells. This inhibition was due to an effect of Bcl-2 at the level of InsP3Rs because responses to both anti-CD3 antibody and a cell-permeant InsP3 ester were decreased. Bcl-2 inhibited the extent of calcium release from the ER of permeabilized WEHI7.2 cells, even at saturating concentrations of InsP3, without decreasing luminal calcium concentration. Furthermore, Bcl-2 reduced the open probability of purified InsP3Rs reconstituted into lipid bilayers. Bcl-2 and InsP3Rs were detected together in macromolecular complexes by coimmunoprecipitation and blue native gel electrophoresis. We suggest that this functional interaction of Bcl-2 with InsP3Rs inhibits InsP3R activation and thereby regulates InsP3-induced calcium release from the ER

    Novel Protein Disulfide Isomerase Inhibitor with Anticancer Activity in Multiple Myeloma

    Get PDF
    Multiple myeloma cells secrete more disulfide bond–rich proteins than any other mammalian cell. Thus, inhibition of protein disulfide isomerases (PDI) required for protein folding in the endoplasmic reticulum (ER) should increase ER stress beyond repair in this incurable cancer. Here, we report the mechanistically unbiased discovery of a novel PDI-inhibiting compound with antimyeloma activity. We screened a 30,355 small-molecule library using a multilayered multiple myeloma cell–based cytotoxicity assay that modeled disease niche, normal liver, kidney, and bone marrow. CCF642, a bone marrow–sparing compound, exhibited a submicromolar IC50 in 10 of 10 multiple myeloma cell lines. An active biotinylated analog of CCF642 defined binding to the PDI isoenzymes A1, A3, and A4 in MM cells. In vitro, CCF642 inhibited PDI reductase activity about 100-fold more potently than the structurally distinct established inhibitors PACMA 31 and LOC14. Computational modeling suggested a novel covalent binding mode in active-site CGHCK motifs. Remarkably, without any further chemistry optimization, CCF642 displayed potent efficacy in an aggressive syngeneic mouse model of multiple myeloma and prolonged the lifespan of C57BL/KaLwRij mice engrafted with 5TGM1-luc myeloma, an effect comparable to the first-line multiple myeloma therapeutic bortezomib. Consistent with PDI inhibition, CCF642 caused acute ER stress in multiple myeloma cells accompanied by apoptosis-inducing calcium release. Overall, our results provide an illustration of the utility of simple in vivo simulations as part of a drug discovery effort, along with a sound preclinical rationale to develop a new small-molecule therapeutic to treat multiple myeloma

    The Anticancer Plant Triterpenoid, Avicin D, Regulates Glucocorticoid Receptor Signaling: Implications for Cellular Metabolism

    Get PDF
    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from “ancient hopanoids,” avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use

    Creating a New Cancer Therapeutic Agent by Targeting the Interaction between Bcl-2 and IP

    No full text
    Bcl-2 is a member of a family of proteins that regulate cell survival. Expression of Bcl-2 is aberrantly elevated in many types of cancer. Within cells of the immune system, Bcl-2 has a physiological role in regulating immune responses. However, in cancers arising from cells of the immune system Bcl-2 promotes cell survival and proliferation. This review summarizes discoveries over the past 30 years that have elucidated Bcl-2's role in the normal immune system, including its actions in regulating calcium (Ca2+) signals necessary for the immune response, and for Ca2+ -mediated apoptosis at the end of an immune response. How Bcl-2 modulates the release of Ca2+ from intracellular stores via inositol 1,4,5-trisphosphate receptors (IP3R) is discussed, and in particular, the role of Bcl-2/IP3R interactions in promoting the survival of cancer cells by preventing Ca2+ -mediated cell death. The development and usage of a peptide, referred to as TAT-Pep8, or more recently, BIRD-2, that induces death of cancer cells by inhibiting Bcl-2's control over IP3R-mediated Ca2+ elevation is discussed. Studies aimed at discovering a small molecule that mimics BIRD-2's anticancer mechanism of action are summarized, along with the prospect of such a compound becoming a novel therapeutic option for cancer

    The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect

    Get PDF
    Bcl-2 is an oncoprotein that is widely known to promote cell survival by inhibiting apoptosis. We explored the consequences of different expression paradigms on the cellular action of Bcl-2. Using either transient or stable transfection combined with doxycycline-inducible expression, we titrated the cellular concentration of Bcl-2. With each expression paradigm Bcl-2 was correctly targeted to the endoplasmic reticulum and mitochondria. However, with protocols that generated the greatest cellular concentrations of Bcl-2 the structure of these organelles was dramatically altered. The endoplasmic reticulum appeared to be substantially fragmented, whilst mitochondria coalesced into dense perinuclear structures. Under these conditions of high Bcl-2 expression, cells were not protected from pro-apoptotic stimuli. Rather Bcl-2 itself caused a significant amount of spontaneous cell death, and sensitised the cells to apoptotic agents such as staurosporine or ceramide. We observed a direct correlation between Bcl-2 concentration and spontaneous apoptosis. Expression of calbindin, a calcium buffering protein, or an enzyme that inhibited inositol 1,4,5-trisphosphate-mediated calcium release, significantly reduced cell death caused by Bcl-2 expression. We further observed that high levels of Bcl-2 expression caused lipid peroxidation and that the deleterious effects of Bcl-2 could be abrogated by the reactive oxygen species (ROS) scavenger Trolox. When stably expressed at low levels, Bcl-2 did not corrupt organelle structure or trigger spontaneous apoptosis. Rather, it protected cells from pro-apoptotic stimuli. These data reveal that high cellular concentrations of Bcl-2 lead to a calcium- and ROS-dependent induction of death. Selection of the appropriate expression paradigm is therefore crucial when investigating the biological role of Bcl-2

    Bcl-2 suppresses Ca<sup>2+</sup> release through inositol 1,4,5-trisphosphate receptors and inhibits Ca<sup>2+</sup> uptake by mitochondria without affecting ER calcium store content

    No full text
    Cell survival is promoted by the oncoprotein Bcl-2. Previous studies have established that one of the pro-survival actions of Bcl-2 is to reduce cellular fluxes of Ca2+ within cells. In particular, Bcl-2 has been demonstrated to inhibit the release of Ca2+ from the endoplasmic reticulum. However, the mechanism by which Bcl-2 causes reduced Ca2+ release is unclear. In the accompanying paper [C.J. Hanson, M.D. Bootman, C.W. Distelhorst, T. Maraldi, H.L. Roderick, The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect, Cell Calcium (2008)], we described that only stable expression of Bcl-2 allowed it to work in a pro-survival manner whereas transient expression did not. In this study, we have employed HEK-293 cells that stably express Bcl-2, and which are, therefore, protected from pro-apoptotic stimuli, to examine the effect of Bcl-2 on Ca2+ homeostasis and signalling. We observed that Bcl-2 expression decreased the Ca2+ responses of cells induced by application of submaximal agonist concentrations. Whereas, decreasing endogenous Bcl-2 concentration using siRNA potentiated Ca2+ responses. Furthermore, we found that Bcl-2 expression reduced mitochondrial Ca2+ uptake by raising the threshold cytosolic Ca2+ concentration required to activate sequestration. Using a number of different assays, we did not find any evidence for reduction of endoplasmic reticulum luminal Ca2+ in our Bcl-2-expressing cells. Indeed, we observed that Bcl-2 served to preserve the content of the agonist-sensitive Ca2+ pool. Endogenous Bcl-2 was found to interact with inositol 1,4,5-trisphosphate receptors (InsP3Rs) in our cells, and to modify the profile of InsP3R expression. Our data suggest that the presence of Bcl-2 in the proteome of cells has multiple effects on agonist-mediated Ca2+ signals, and can abrogate responses to submaximal levels of stimulation through direct control of InsP3Rs

    Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor

    Get PDF
    AbstractBcl-2 is the founding member of a large family of apoptosis regulating proteins. Bcl-2 is a prime target for novel therapeutics because it is elevated in many forms of cancer and contributes to cancer progression and therapy resistance based on its ability to inhibit apoptosis. Bcl-2 interacts with proapoptotic members of the Bcl-2 family to inhibit apoptosis and small molecules that disrupt this interaction have already entered the cancer therapy arena. A separate function of Bcl-2 is to inhibit Ca2+ signals that promote apoptosis. This function is mediated through interaction of the Bcl-2 BH4 domain with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel. A novel peptide inhibitor of this interaction enhances proapoptotic Ca2+ signals. In preliminary experiments this peptide enhanced ABT-737 induced apoptosis in chronic lymphocytic leukemia cells. These findings draw attention to the BH4 domain as a potential therapeutic target. This review summarizes what is currently known about the BH4 domain of Bcl-2, its interaction with the IP3R and other proteins, and the part it plays in Bcl-2's anti-apoptotic function. In addition, we speculate on how the BH4 domain of Bcl-2 can be targeted therapeutically not only for diseases associated with apoptosis resistance, but also for diseases associated with accelerated cell death
    corecore