1,412 research outputs found
Pathwise Sensitivity Analysis in Transient Regimes
The instantaneous relative entropy (IRE) and the corresponding instanta-
neous Fisher information matrix (IFIM) for transient stochastic processes are
pre- sented in this paper. These novel tools for sensitivity analysis of
stochastic models serve as an extension of the well known relative entropy rate
(RER) and the corre- sponding Fisher information matrix (FIM) that apply to
stationary processes. Three cases are studied here, discrete-time Markov
chains, continuous-time Markov chains and stochastic differential equations. A
biological reaction network is presented as a demonstration numerical example
The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices
The radial distributions of the Mg2 and Fe5270 Lick spectral indices have
been measured to large radial distances on the disks of NGC 4303 and NGC 4535
using an imaging technique based on interference filters. These data, added to
those of NGC 4321 previously published in Paper I of this series are used to
constraint chemical (multiphase) evolutionary models for these galaxies.
Because the integrated light of a stellar disk is a time average over the
history of the galaxy weighted by the star formation rate, these constraints
complement the information on chemical gradients provided by the study of HII
regions which, by themselves, can only provide the alpha-elements abundance
accumulate over the life of the galaxy. The agreement between the observations
and the model predictions shown here lends confidence to the models which are
then used to describe the time evolution of galaxy parameters such as star
formation rates, chemical gradients, and gradients in the mean age of the
stellar population.Comment: to be published in Astrophysical Journa
The electronic structure of amorphous silica: A numerical study
We present a computational study of the electronic properties of amorphous
SiO2. The ionic configurations used are the ones generated by an earlier
molecular dynamics simulations in which the system was cooled with different
cooling rates from the liquid state to a glass, thus giving access to
glass-like configurations with different degrees of disorder [Phys. Rev. B 54,
15808 (1996)]. The electronic structure is described by a tight-binding
Hamiltonian. We study the influence of the degree of disorder on the density of
states, the localization properties, the optical absorption, the nature of
defects within the mobility gap, and on the fluctuations of the Madelung
potential, where the disorder manifests itself most prominently. The
experimentally observed mismatch between a photoconductivity threshold of 9 eV
and the onset of the optical absorption around 7 eV is interpreted by the
picture of eigenstates localized by potential energy fluctuations in a mobility
gap of approximately 9 eV and a density of states that exhibits valence and
conduction band tails which are, even in the absence of defects, deeply located
within the former band gap.Comment: 21 pages of Latex, 5 eps figure
Automatically refining partial specifications for Program Verification
10.1007/978-3-642-21437-0_28Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6664 LNCS369-38
Annotation-Based Static Analysis for Personal Data Protection
This paper elaborates the use of static source code analysis in the context
of data protection. The topic is important for software engineering in order
for software developers to improve the protection of personal data during
software development. To this end, the paper proposes a design of annotating
classes and functions that process personal data. The design serves two primary
purposes: on one hand, it provides means for software developers to document
their intent; on the other hand, it furnishes tools for automatic detection of
potential violations. This dual rationale facilitates compliance with the
General Data Protection Regulation (GDPR) and other emerging data protection
and privacy regulations. In addition to a brief review of the state-of-the-art
of static analysis in the data protection context and the design of the
proposed analysis method, a concrete tool is presented to demonstrate a
practical implementation for the Java programming language
All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope
Advanced LIGO detected a significant gravitational wave signal (GW170104)
originating from the coalescence of two black holes during the second
observation run on January 4, 2017. An all-sky high-energy
neutrino follow-up search has been made using data from the ANTARES neutrino
telescope, including both upgoing and downgoing events in two separate
analyses. No neutrino candidates were found within s around the GW
event time nor any time clustering of events over an extended time window of
months. The non-detection is used to constrain isotropic-equivalent
high-energy neutrino emission from GW170104 to less than
erg for a spectrum
The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)
Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for
the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by
the ANTARES Collaboratio
The ANTARES Collaboration: Contributions to ICRC 2017 Part II: The multi-messenger program
Papers on the ANTARES multi-messenger program, prepared for the 35th
International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the
ANTARES Collaboratio
- …