14 research outputs found

    Nox2 and p47phox modulate compensatory growth of primary collateral arteries

    Get PDF
    The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47phox. Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47phox interaction was involved. Functional significance of p47phox expression was assessed by evaluation of collateral growth in rats administered p47phox small interfering RNA and in p47phox−/− mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47phox, mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease

    Novel Method to Assess Arterial Insufficiency in Rodent Hindlimb

    Get PDF
    BACKGROUND: Lack of techniques to assess maximal blood flow capacity thwarts the use of rodent models of arterial insufficiency to evaluate therapies for intermittent claudication. We evaluated femoral vein outflow (VO) in combination with stimulated muscle contraction as a potential method to assess functional hind limb arterial reserve and therapeutic efficacy in a rodent model of subcritical limb ischemia. MATERIALS AND METHODS: VO was measured with perivascular flow probes at rest and during stimulated calf muscle contraction in young, healthy rats (Wistar Kyoto, WKY; lean Zucker rats, LZR) and rats with cardiovascular risk factors (spontaneously hypertensive [SHR]; obese Zucker rats [OZR]) with acute and/or chronic femoral arterial occlusion. Therapeutic efficacy was assessed by administration of Ramipril or Losartan to SHR after femoral artery excision. RESULTS: VO measurement in WKY demonstrated the utility of this method to assess hind limb perfusion at rest and during calf muscle contraction. Although application to diseased models (OZR and SHR) demonstrated normal resting perfusion compared with contralateral limbs, a significant reduction in reserve capacity was uncovered with muscle stimulation. Administration of Ramipril and Losartan demonstrated significant improvement in functional arterial reserve. CONCLUSIONS: The results demonstrate that this novel method to assess distal limb perfusion in small rodents with subcritical limb ischemia is sufficient to unmask perfusion deficits not apparent at rest, detect impaired compensation in diseased animal models with risk factors, and assess therapeutic efficacy. The approach provides a significant advance in methods to investigate potential mechanisms and novel therapies for subcritical limb ischemia in preclinical rodent models

    Murine Ultrasound-Guided Transabdominal Para-Aortic Injections of Self-Assembling Type I Collagen Oligomers

    Get PDF
    Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into the self-assembling type I collagen matrix described here can be delivered near the aorta and locally limit AAA expansion.

    Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Get PDF
    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target

    Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation

    Get PDF
    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs

    Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox.

    No full text
    Novel observations in this report include the demonstration of collateral resistance as the primary limitation of hindlimb perfusion, elevated NADPH oxidase (Nox) expression in peripheral arteries, unimpaired monocyte mobilization and demargination, and reversal of suppressed principle collateral growth by Nox2 ablation/inhibition in a diet-induced obese mouse model of arterial occlusion
    corecore