172 research outputs found
MINDED-FBA: An Automatic Remote Sensing Tool for the Estimation of Flooded and Burned Areas
This paper presents the MINDED-FBA, a remote-sensing-based tool for the determination of both flooded and burned areas. The tool, freely distributed as a QGIS plugin, consists of an adaptation and development of the previously published Multi Index Image Differencing methods (MINDED and MINDED-BA). The MINDED-FBA allows the integration and combination of a wider diversity of satellite sensor datasets, now including the synthetic aperture radar (SAR), in addition to optical multispectral data. The performance of the tool is evaluated for six case studies located in Portugal, Australia, Pakistan, Italy, and the USA. The case studies were chosen for representing a wide range of conditions, such as type of hazardous event (i.e., flooding or fire), scale of application (i.e., local or regional), site specificities (e.g., climatic conditions, morphology), and available satellite data (optical multispectral and SAR). The results are compared in respect to reference delineation datasets (mostly from the Copernicus EMS). The application of the MINDED-FBA tool with SAR data is particularly effective to delineate flooding, while optical multispectral data resulted in the best performances for burned areas. Nonetheless, the combination of both types of remote sensing data (data fusion approach) also provides high correlations with the available reference datasets. The MINDED-FBA tool could represent a new near-real-time solution, capable of supporting emergency response measures
Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy)
Variability in lithology and weathering degree affects physical and mechanical properties
of rocks. In this study, we investigated the relationships between weathering degree and engineering
geological properties of trachydacitic volcanic rocks from Monte Amiata (central Italy) by coupling
field and laboratory analyses. We collected in situ Schmidt hammer tests in the field. We evaluated
weathering quantifying the percentage of secondary minerals through thermal analysis in the
laboratory. We also determined dry density (rd), specific gravity of solids (Gs), porosity (n) and
two-dimensional (2D) porosity as resulted from scanning electron microscopy investigations. The
results of our study indicate a negative linear correlation between Schmidt hammer rebound values
and secondary mineral percentage. This correlation provides a tool to quantitatively estimate the
deterioration of rock uniaxial compressive strength (UCS) as weathering increases. Moreover, thermal
analysis turned out to be a quantitative and reproducible method to evaluate weathering degree of
magmatic rocks
Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy)
In this work, we evaluated the influence of root structure on shallow landslide distribution. Root density measurements were acquired in the field and the corresponding root cohesion was estimated. Data were acquired from 150 hillslope deposit trenches dug in areas either devoid or affected by shallow landslides within the Garfagnana Valley (northern Tuscany, Italy). Results highlighted a correlation between the root reinforcement and the location of measurement sites. Namely, lower root density was detected within shallow landslides, with respect to neighboring areas. Root area ratio (RAR) data allowed us to estimate root cohesion by the application of the revised version of the Wu and Waldron Model. Then, we propose a new method for the assimilation of the lateral root reinforcement into the infinite slope model and the limit equilibrium approach by introducing the equivalent root cohesion parameter. The results fall within the range of root cohesion values adopted in most of the physically based shallow landslide susceptibility models known in the literature (mean values ranging between ca. 2 and 3 kPa). Moreover, the results are in line with the scientific literature that has demonstrated the link between root mechanical properties, spatial variability of root reinforcement, and shallow landslide locations
Geomatics for Integrated Coastal Zone Management: multitemporal shoreline analysis and future regional perspective for the Portuguese Central Region
Shoreline mapping and change detection are critical for Integrated Coastal Zone Management (ICZM) and all that it represents. This research utilized previous studies that combined both Remote Sensing and Geographical Information System (GIS) techniques to assess, map and forecast shoreline evolution from short-term perspectives. The study area is located in the central region of Portugal, between the counties of Ovar and Marinha Grande (circa 140 km) and the time period assessed was from 1984 to 2011. Historical data were used to calculate advance and retreat rates in order to support environmental scenarios for the Portuguese Central Region’s Coastal Management Plan. To ensure accuracy, a repeatable procedure was validated using Landsat TM and ETM+ satellite images, which were subsequently enhanced and elaborated by Remote Sensing analyses to detect and extract shorelines. They were subsequently integrated within an Esri ArcGIS software application (DSAS - Digital Shoreline Analysis System) to determine and predict rates of coastline change. Graphical DSAS plots identified coastline phases and shifts and were used to simulate the 2022 coastline scenario. These results will be integrated into the Coastal Zone Management Plan (Horizon – 2022). Importantly this methodological planning approach provides visual coastline change information for regional decision-makers and stakeholders
Exploring the Potential of Portable Spectroscopic Techniques for the Biochemical Characterization of Roots in Shallow Landslides
In the present work, Raman, Fourier Transform Infrared (FTIR) and elemental Laser-Induced Breakdown Spectroscopy (LIBS) spectroscopic techniques were used for the assessment of the influence of plant root composition towards shallow landslide occurrence. For this purpose, analyses were directly carried out on root samples collected from chestnut forests of the Garfagnana basin (northern Apennines, Italy) in different areas devoid and affected by shallow landslides due to frequent heavy rain events. Results have highlighted a correlation between the biochemical constituents of wooden roots and the sampling areas. In particular, different content of lignin/cellulose, as well as minerals nutrients, have been detected in roots collected where shallow landslides occurred, with respect to more stable areas. The results achieved are in line with the scientific literature which has demonstrated the link between the chemical composition of roots with their mechanical properties and, in particular, tensile strength and cohesion. Finally, portable spectroscopic instrumentations were employed without the need for either any sample preparation for Raman and LIBS spectroscopy or minimal preparation for FTIR spectroscopy. This novel and fast approach has allowed achieving information on the content of the major constituents of the root cell, such as cellulose and lignin, as well as their mineral nutrients. This approach could be reasonably included among the vegetation protection actions towards instability, as well as for the evaluation of shallow landslide susceptibility, combining geological, vegetational and biochemical parameters with sustainability
Mapeamento de áreas suscetíveis a deslizamentos no município de Pato Branco, Paraná com a aplicação do modelo SHALSTAB
Este trabalho compara modelos matemáticos de estabilidade de encostas associados a técnicas de mapeamento temático em SIG. O objetivo principal foi avaliar a aplicação do modelo SHALSTAB no mapeamento de áreas suscetíveis à ocorrência de escorregamentos na região de Pato Branco, Paraná, buscando determinar a quantidade de chuva necessária para desencadear estes eventos extremos e comparar com resultados de trabalhos anteriores que determinaram os fatores de segurança das encostas dessa área. Os resultados obtidos demonstraram que ambas metodologias analisadas mostraram-se aptas como ferramenta para identificar zonas de susceptibilidade à ocorrência de escorregamento raso, uma vez que os deslizamentos ocorridos na cidade estão localizados em áreas consideradas instáveis pelos dois métodos.This paper compares mathematical models of slope stability associated with thematic mapping techniques in GIS. The main objective was to evaluate the application of SHALSTAB model in the susceptible mapping areas to the occurrence of landslides in Pato Branco, Paraná State, aiming to determine the needed amount of rain to trigger these extreme events and to compare, with previous studies results, what have determined the security factors of the slopes in this area. The results showed that both analyzed methodologies proved suitable as a tool for identifying susceptibility to the occurrence of slip shallow areas, once the slips occurred in the city are located in areas considered unstable by both methods
- …