41 research outputs found

    Acceptability, feasibility, drug safety, and effectiveness of a pilot mass drug administration with a single round of sulfadoxine-pyrimethamine plus primaquine and indoor residual spraying in communities with malaria transmission in Haiti, 2018

    Get PDF
    For a malaria elimination strategy, Haiti's National Malaria Control Program piloted a mass drug administration (MDA) with indoor residual spraying (IRS) in 12 high-transmission areas across five communes after implementing community case management and strengthened surveillance. The MDA distributed sulfadoxine-pyrimethamine and single low-dose primaquine to eligible residents during house visits. The IRS campaign applied pirimiphos-methyl insecticide on walls of eligible houses. Pre- and post-campaign cross-sectional surveys were conducted to assess acceptability, feasibility, drug safety, and effectiveness of the combined interventions. Stated acceptability for MDA before the campaign was 99.2%; MDA coverage estimated at 10 weeks post-campaign was 89.6%. Similarly, stated acceptability of IRS at baseline was 99.9%; however, household IRS coverage was 48.9% because of the high number of ineligible houses. Effectiveness measured by Plasmodium falciparum prevalence at baseline and 10 weeks post-campaign were similar: 1.31% versus 1.43%, respectively. Prevalence of serological markers were similar at 10 weeks post-campaign compared with baseline, and increased at 6 months. No severe adverse events associated with the MDA were identified in the pilot; there were severe adverse events in a separate, subsequent campaign. Both MDA and IRS are acceptable and feasible interventions in Haiti. Although a significant impact of a single round of MDA/IRS on malaria transmission was not found using a standard pre- and post-intervention comparison, it is possible there was blunting of the peak transmission. Seasonal malaria transmission patterns, suboptimal IRS coverage, and low baseline parasitemia may have limited the effectiveness or the ability to measure effectiveness

    A novel approach to characterize the binding orientation of Iysozyme on ion-exchange resins

    No full text
    Much work has been done to qualify and quantify chromatographic adsorption and transportation mechanisms in different adsorber materials. An important aspect in all studies is the understanding of the binding mechanism between protein and resin on a molecular level in order to optimize processes on the level of adsorber design. We established a method to determine the binding orientation of lysozyme for different materials under various experimental conditions enabling us to observe changes in the mode of adsorption. We varied the protein load of two different adsorber types, Source 15S, a conventional cation exchange resin and EMD Fractogel SO(3), a tentacle-type cation exchanger. We found similar preferential binding sites for the interaction between lysozyme and the surface of these adsorbers at low surface coverage, however, the tentacle adsorber exhibited multi-point binding whereas the binding on Source was limited to one binding site only. With increasing protein density on the surface, lysozyme rotates from a space-consuming side-on to a space-saving end-on orientation on Fractogel, explaining a higher maximum binding capacity for Fractogel. This re-orientation could not be observed for Source

    Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents

    No full text
    Chromatography is the most widely used technique for the purification of biopharmaceuticals in the biotech industry. Surprisingly, process development is often still based on empirical studies or experience; recently high-throughput screening stations are employed to minimize development time and to improve screening quality. Still, experimental effort remains high and a more detailed understanding of adsorption mechanisms on a molecular level underlying chromatographic separation could help in the future to select and design chromatography steps in silico. In this study, we focused on the elucidation of protein orientation upon adsorption onto a chromatographic resin. We identified two characteristic binding sites of lysozyme on SP Sepharose Fast Flow and one multipoint interaction of lysozyme with SP Sepharose XL. Increasing ionic strength did not significantly influence the binding, whereas changes in the mobile phase pH led to a re-orientation on SP Sepharose FF. This phenomenon agrees well with theoretical considerations, including a detailed description of the surface charge distribution with changing pH and linear elution experiments, giving an idea why proteins are often retained on ion-exchange materials beyond their isoelectric point
    corecore