45 research outputs found

    Periinfarct rewiring supports recovery after primary motor cortex stroke.

    Get PDF
    After stroke restricted to the primary motor cortex (M1), it is uncertain whether network reorganization associated with recovery involves the periinfarct or more remote regions. We studied 16 patients with focal M1 stroke and hand paresis. Motor function and resting-state MRI functional connectivity (FC) were assessed at three time points: acute (<10 days), early subacute (3 weeks), and late subacute (3 months). FC correlates of recovery were investigated at three spatial scales, (i) ipsilesional non-infarcted M1, (ii) core motor network (M1, premotor cortex (PMC), supplementary motor area (SMA), and primary somatosensory cortex), and (iii) extended motor network including all regions structurally connected to the upper limb representation of M1. Hand dexterity was impaired only in the acute phase (P = 0.036). At a small spatial scale, clinical recovery was more frequently associated with connections involving ipsilesional non-infarcted M1 (Odds Ratio = 6.29; P = 0.036). At a larger scale, recovery correlated with increased FC strength in the core network compared to the extended motor network (rho = 0.71;P = 0.006). These results suggest that FC changes associated with motor improvement involve the perilesional M1 and do not extend beyond the core motor network. Core motor regions, and more specifically ipsilesional non-infarcted M1, could hence become primary targets for restorative therapies

    Epidemiology of Malaria in an Area Prepared for Clinical Trials in Korogwe, North-eastern Tanzania.

    Get PDF
    Site preparation is a pre-requesite in conducting malaria vaccines trials. This study was conducted in 12 villages to determine malariometric indices and associated risk factors, during long and short rainy seasons, in an area with varying malaria transmission intensities in Korogwe district, Tanzania. Four villages had passive case detection (PCD) of fever system using village health workers. Four malariometric cross-sectional surveys were conducted between November 2005 and May 2007 among individuals aged 0-19 years, living in lowland urban, lowland rural and highland strata. A total of 10,766 blood samples were collected for malaria parasite diagnosis and anaemia estimation. Blood smears were stained with Giemsa while haemoglobin level was measured by HaemoCue. Socio-economic data were collected between Jan-Apr 2006. Adjusting for the effect of age, the risk of Plasmodium falciparum parasitaemia was significantly lower in both lowland urban, (OR = 0.26; 95%CI: 0.23-0.29, p < 0.001) and highlands, (OR = 0.21; 95%CI: 0.17-0.25, p < 0.001) compared to lowland rural. Individuals aged 6-9 years in the lowland rural and 4-19 years in both lowland urban and highlands had the highest parasite prevalence, whilst children below five years in all strata had the highest parasite density. Prevalence of splenomegaly and gametocyte were also lower in both lowland urban and highlands than in lowland rural. Anaemia (Hb <11 g/dl) prevalence was lowest in the lowland urban. Availability of PCD and higher socio-economic status (SES) were associated with reduced malaria and anaemia prevalence. Higher SES and use of bed nets in the lowland urban could be the important factors for low malaria infections in this stratum. Results obtained here were used together with those from PCD and DSS in selecting a village for Phase 1b MSP3 vaccine trial, which was conducted in the study area in year 2008

    Efficacy of different strategies to treat anemia in children: a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anemia continues to be a major public health problem among children in many regions of the world, and it is still not clear which strategy to treat it is most effective.</p> <p>Objective</p> <p>To evaluate the efficacy and children's acceptance of several recognized strategies to treat anemia.</p> <p>Methods</p> <p>Non-breastfed children (n = 577), 6 to 43 mo of age, were screened for the trial; 267 were anemic (hemoglobin < 11.7 g/dL), and 266 of those were randomized into 1 of 5 treatments to received daily either: an iron supplement (IS), an iron+folic acid supplement (IFS), a multiple micronutrient supplement (MMS), a micronutrient-fortified complementary food as porridge powder (FCF), or zinc+iron+ascorbic acid fortified water (FW). The iron content of each daily dose was 20, 12.5, 10, 10 and 6.7 mg respectively. Hemoglobin (Hb), ferritin, total iron, weight and height were measured at baseline and after 4 months of treatment. Morbidity, treatment acceptability and adherence were recorded during the intervention.</p> <p>Results</p> <p>All treatments significantly increased Hb and total iron concentration; ferritin did not change significantly. Groups MMS, IS and IFS increased Hb (g/dL) [1.50 (95%CI: 1.17, 1.83), 1.48 [(1.18, 1.78) and 1.57 (1.26, 1.88), respectively] and total iron ((μg/dL) [0.15 (0.01, 0.29), 0.19 (0.06, 0.31) and 0.12(-0.01, 0.25), respectively] significantly more than FCF [0.92 (0.64, 1.20)] but not to FW group [0.14 (0.04, 0.24)]. The prevalence of anemia was reduced to a greater extent in the MMS and IFS groups (72% and 69%, respectively) than in the FCF group (45%) (p < 0.05). There were no significant differences in anthropometry or in the number of episodes of diarrhea and respiratory infections among treatment groups. The supplements MMS and IS were less acceptable to children, than IFS, FCF and FW.</p> <p>Conclusion</p> <p>The three supplements IS, ISF and MMS increased Hb more than the FCF; the supplements that contained micronutrients (IFS and MMS) were more effective for reducing the prevalence of anemia. In general, fortified foods were better accepted by the study participants than supplements.</p> <p>ClinicalTrial.gov Identifier</p> <p>NCT00822380</p

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Preparing for a Second Attack: A Lesion Simulation Study on Network Resilience After Stroke.

    No full text
    Does the brain become more resilient after a first stroke to reduce the consequences of a new lesion? Although recurrent strokes are a major clinical issue, whether and how the brain prepares for a second attack is unknown. This is due to the difficulties to obtain an appropriate dataset of stroke patients with comparable lesions, imaged at the same interval after onset. Furthermore, timing of the recurrent event remains unpredictable. Here, we used a novel clinical lesion simulation approach to test the hypothesis that resilience in brain networks increases during stroke recovery. Sixteen highly selected patients with a lesion restricted to the primary motor cortex were recruited. At 3 time points of the index event (10 days, 3 weeks, 3 months), we mimicked recurrent infarcts by deletion of nodes in brain networks (resting-state functional magnetic resonance imaging). Graph measures were applied to determine resilience (global efficiency after attack) and wiring cost (mean degree) of the network. At 10 days and 3 weeks after stroke, resilience was similar in patients and controls. However, at 3 months, although motor function had fully recovered, resilience to clinically representative simulated lesions was higher compared to controls (cortical lesion P=0.012; subcortical: P=0.009; cortico-subcortical: P=0.009). Similar results were found after random (P=0.012) and targeted (P=0.015) attacks. Our results suggest that, in this highly selected cohort of patients with lesions restricted to the primary motor cortex, brain networks reconfigure to increase resilience to future insults. Lesion simulation is an innovative approach, which may have major implications for stroke therapy. Individualized neuromodulation strategies could be developed to foster resilient network reconfigurations after a first stroke to limit the consequences of future attacks

    Evolution of the neurochemical profiles in the G93A-SOD1 mouse model of amyotrophic lateral sclerosis.

    Get PDF
    In vivo &lt;sup&gt;1&lt;/sup&gt; H magnetic resonance spectroscopy ( &lt;sup&gt;1&lt;/sup&gt; H-MRS) investigations of amyotrophic lateral sclerosis (ALS) mouse brain may provide neurochemical profiles and alterations in association with ALS disease progression. We aimed to longitudinally follow neurochemical evolutions of striatum, brainstem and motor cortex of mice transgenic for G93A mutant human superoxide dismutase type-1 (G93A-SOD1), an ALS model. Region-specific neurochemical alterations were detected in asymptomatic G93A-SOD1 mice, particularly in lactate (-19%) and glutamate (+8%) of brainstem, along with γ-amino-butyric acid (-30%), N-acetyl-aspartate (-5%) and ascorbate (+51%) of motor cortex. With disease progression towards the end-stage, increased numbers of metabolic changes of G93A-SOD1 mice were observed (e.g. glutamine levels increased in the brainstem (&gt;+66%) and motor cortex (&gt;+54%)). Through ALS disease progression, an overall increase of glutamine/glutamate in G93A-SOD1 mice was observed in the striatum (p &lt; 0.01) and even more so in two motor neuron enriched regions, the brainstem and motor cortex (p &lt; 0.0001). These &lt;sup&gt;1&lt;/sup&gt; H-MRS data underscore a pattern of neurochemical alterations that are specific to brain regions and to disease stages of the G93A-SOD1 mouse model. These neurochemical changes may contribute to early diagnosis and disease monitoring in ALS patients

    Intracerebroventricular Injection of Adeno-Associated Virus 6 and 9 Vectors for Cell Type-Specific Transgene Expression in the Spinal Cord

    No full text
    In the context of motoneuron diseases, gene delivery as an experimental or therapeutic approach is hindered by the challenge to specifically target cell populations that are widely distributed along the spinal cord. Further complicating the task, transgenes often need to be delivered to motoneurons and/or glial cells to address the non-cell-autonomous mechanisms involved in disease pathogenesis. Intracerebroventricular (ICV) injection of recombinant adeno-associated viruses (AAVs) in newborn mice allows distributing viral vectors throughout the central nervous system while limiting undesired transduction of peripheral organs. Here, we show that by combining the appropriate set of AAV serotype and promoter, specific transgene expression can be achieved in either motoneurons or astrocytes along the whole mouse spinal cord. ICV injection of recombinant AAV6 with the cytomegalovirus (cmv) promoter preferentially targets motoneurons, whereas AAV9 particles combined with the astrocyte-specific gfaABC(1)D promoter lead to significant transgene expression selectively targeted to astrocytes. Importantly, ICV coinjection of both AAV6-cmv and AAV9-gfaABC(1)D results in segregated expression of two different transgenes in motoneurons and astrocytes, respectively. Relevance of viral vector delivery via the cerebrospinal fluid was further investigated in young nonhuman primates. Intracisternal injection of recombinant AAV6-cmv led to robust cervical transduction of motoneurons, highlighting the potential of this approach for gene therapy and modeling of motoneuron diseases
    corecore