28 research outputs found

    Intraoperative Defibrillation Testing of Subcutaneous Implantable Cardioverter‐Defibrillator Systems—A Simple Issue?

    Full text link
    Background: The results of the recently published randomized SIMPLE trial question the role of routine intraoperative defibrillation testing. However, testing is still recommended during implantation of the entirely subcutaneous implantable cardioverter‐defibrillator (S‐ICD) system. To address the question of whether defibrillation testing in S‐ICD systems is still necessary, we analyzed the data of a large, standard‐of‐care prospective single‐center S‐ICD registry. // Methods and Results: In the present study, 102 consecutive patients received an S‐ICD for primary (n=50) or secondary prevention (n=52). Defibrillation testing was performed in all except 4 patients. In 74 (75%; 95% CI 0.66–0.83) of 98 patients, ventricular fibrillation was effectively terminated by the first programmed internal shock. In 24 (25%; 95% CI 0.22–0.44) of 98 patients, the first internal shock was ineffective and further internal or external shock deliveries were required. In these patients, programming to reversed shock polarity (n=14) or repositioning of the sensing lead (n=1) or the pulse generator (n=5) led to successful defibrillation. In 4 patients, a safety margin of <10 J was not attained. Nevertheless, in these 4 patients, ventricular arrhythmias were effectively terminated with an internal 80‐J shock. // Conclusions: Although it has been shown that defibrillation testing is not necessary in transvenous ICD systems, it seems particular important for S‐ICD systems, because in nearly 25% of the cases the primary intraoperative test was not successful. In most cases, a successful defibrillation could be achieved by changing shock polarity or by optimizing the shock vector caused by the pulse generator or lead repositioning.<br

    Distinct Occurrence of Proarrhythmic Afterdepolarizations in Atrial Versus Ventricular Cardiomyocytes: Implications for Translational Research on Atrial Arrhythmia

    Get PDF
    Background: Principal mechanisms of arrhythmia have been derived from ventricular but not atrial cardiomyocytes of animal models despite higher prevalence of atrial arrhythmia (e.g., atrial fibrillation). Due to significant ultrastructural and functional differences, a simple transfer of ventricular proneness toward arrhythmia to atrial arrhythmia is critical. The use of murine models in arrhythmia research is widespread, despite known translational limitations. We here directly compare atrial and ventricular mechanisms of arrhythmia to identify critical differences that should be considered in murine models for development of antiarrhythmic strategies for atrial arrhythmia.Methods and Results: Isolated murine atrial and ventricular myocytes were analyzed by wide field microscopy and subjected to a proarrhythmic protocol during patch-clamp experiments. As expected, the spindle shaped atrial myocytes showed decreased cell area and membrane capacitance compared to the rectangular shaped ventricular myocytes. Though delayed afterdepolarizations (DADs) could be evoked in a similar fraction of both cell types (80% of cells each), these led significantly more often to the occurrence of spontaneous action potentials (sAPs) in ventricular myocytes. Interestingly, numerous early afterdepolarizations (EADs) were observed in the majority of ventricular myocytes, but there was no EAD in any atrial myocyte (EADs per cell; atrial myocytes: 0 ± 0; n = 25/12 animals; ventricular myocytes: 1.5 [0–43]; n = 20/12 animals; p &lt; 0.05). At the same time, the action potential duration to 90% decay (APD90) was unaltered and the APD50 even increased in atrial versus ventricular myocytes. However, the depolarizing L-type Ca2+ current (ICa) and Na+/Ca2+-exchanger inward current (INCX) were significantly smaller in atrial versus ventricular myocytes.Conclusion: In mice, atrial myocytes exhibit a substantially distinct occurrence of proarrhythmic afterdepolarizations compared to ventricular myocytes, since they are in a similar manner susceptible to DADs but interestingly seem to be protected against EADs and show less sAPs. Key factors in the generation of EADs like ICa and INCX were significantly reduced in atrial versus ventricular myocytes, which may offer a mechanistic explanation for the observed protection against EADs. These findings may be of relevance for current studies on atrial level in murine models to develop targeted strategies for the treatment of atrial arrhythmia

    Prospective blinded evaluation of smartphone-based ECG for differentiation of supraventricular tachycardia from inappropriate sinus tachycardia

    No full text
    Introduction!#!Supraventricular tachycardias (SVT) are often difficult to document due to their intermittent, short-lasting nature. Smartphone-based one-lead ECG monitors (sECG) were initially developed for the diagnosis of atrial fibrillation. No data have been published regarding their potential role in differentiating inappropiate sinus tachycardia (IST) from regular SVT. If cardiologists could distinguish IST from SVT in sECG, economic health care burden might be significantly reduced.!##!Methods!#!We prospectively recruited 75 consecutive patients with known SVT undergoing an EP study. In all patients, four ECG were recorded: a sECG during SVT and during sinus tachycardia and respective 12-lead ECG. Two experienced electrophysiologists were blinded to the diagnoses and separately evaluated all ECG.!##!Results!#!Three hundred individual ECG were recorded in 75 patients (47 female, age 50 ± 18 years, BMI 26 ± 5 kg/m!##!Conclusion!#!A smartphone-based one-lead ECG monitor allows for differentiation of SVT from IST in about 90% of cases. These results should encourage cardiologists to integrate wearables into clinical practice, possibly reducing time to definitive diagnosis of an arrhythmia and unnecessary EP procedures. A smartphone-based one lead ECG device (panel A) can be used reliably to differentiate supraventricular tachycardia (panel B) from inappropriate sinus tachycardia when compared to a simultaneously conducted gold-standard electrophysiology study (panels C, D)

    Clinical, procedural and long-term outcome of ischemic VT ablation in patients with previous anterior versus inferior myocardial infarction

    No full text
    Background!#!Outcome of ischemic VT ablation may differ between patients with previous myocardial infarction (MI) in relation to infarct localization.!##!Methods!#!We analyzed procedural data, acute and long-term outcomes of 152 consecutive patients (139 men, mean age 67 ± 9 years) with previous anterior or inferior MI who underwent ischemic VT ablation at our institution between January 2010 and October 2015.!##!Results!#!More patients had a history of inferior MI (58%). Mean ejection fraction was significantly lower in anterior MI patients (28 ± 10% vs. 34 ± 10%, p &amp;lt; 0.001). NYHA class and presence of comorbidities were not different between the groups. Indication for the procedure was electrical storm in 43% of patients, and frequent implantable cardioverter defibrillator (ICD) therapies in 57%, and did not differ significantly between anterior and inferior MI patients. A mean of 3 ± 2 VT morphologies were inducible, with a trend towards more VT in the anterior MI group (3.1 ± 2.2 vs. 2.6 ± 1.9, p = 0.18). Procedural parameters and acute success did not differ between the groups. During a mean follow-up of 3 ± 2 years, more anterior MI patients had undergone a re-ablation (49% vs. 33%, p = 0.09, Chi-square test). There was a trend towards more ICD shocks in patients with previous anterior MI (46% vs. 34%). After adjusting for risk factors and ejection fraction, multivariable Cox regression analyses showed no significant difference in mortality (p = 0.78) and cardiovascular mortality between infarct localizations (p = 0.6).!##!Conclusion!#!Clinical characteristics of patients with anterior and inferior MI are similar except for ejection fraction. Patients with inferior MI appear to have better outcome regarding survival, ICD shocks and re-ablation, but this appears to be related to better ejection fraction when compared with anterior MI

    Outcome of catheter ablation of supraventricular tachyarrhythmias in cardiac sarcoidosis

    Full text link
    Background: Sarcoidosis is a multisystem granulomatous disease of not sufficiently understood origin. Some patients develop cardiac involvement in course of the disease which is mostly responsible for adverse outcome. In addition to complications like high degree atrioventricular (AV) block or ventricular tachyarrhythmias, there is a certain percentage of patients developing atrial tachyarrhythmias. Data is limited and the role of catheter ablation uncertain. Therefore, we studied sarcoid patients who presented with supraventricular tachyarrhythmias. Hypothesis: Treatment and ablation of supraventricular tachycardia could be hampered by inflammation in patients with cardiac sarcoidosis. Methods: We enrolled 37 consecutive patients with cardiac sarcoidosis who presented with atrial tachyarrhythmias and underwent an electrophysiologic study over a period of 6 years (03/2013-04/2019). In total, 16 catheter ablations for atrial tachyarrhythmias were performed. Mean follow-up duration was 2.5 years. Results: Most common ablation performed was cavo-tricuspid isthmus ablation for typical atrial flutter in seven patients (54%). Pulmonary vein isolation for treatment of atrial fibrillation (AF) was performed in five patients (38%). Two patients received slow-pathway modulation for treatment of recurrent atrioventricular nodal reentry tachycardia (AVNRT). All but two patients with AF had no clinical recurrence during follow-up. Two patients had recurrence of AF but still reported markedly improved european heart rhythm association (EHRA) class. Periprocedural safety was very high. There were no adverse events related to the ablation procedure. One patient died during follow-up in the presence of electrical storm. Conclusion: Catheter ablations of supraventricular tachycardias seem to be safe and effective in patients with cardiac sarcoidosis. Outcome is comparable to patients without inflammatory heart disease, although data from larger patient collectives are mandatory to make recommendations in this special entity
    corecore